English

Differentiate the following w.r.t. x: tan-1(x1+6x2)+cot-1(1-10x27x) - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t. x:

`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`

Sum

Solution

Let y = `tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`

= `tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))          ...[∵ cot^-1x = tan^-1(1/x)]`

= `tan^-1(x/(1 + 6x^2)) + tan^-1((7x)/(1 - 10x^2))           ...[∵ cot^-1x = tan^-1(1/x)]`

= `tan^-1[(3x - 2x)/(1 + (3)(2x))] + tan^-1[(5x + 2x)/(1 - (5x)(2x))]`

= tan–13x – tan–12x + tan–15x + tan–12x
= tan–13x + tan–15x

∴ `"dy"/"dx" = "d"/"dx"[tan^-1 3x + tan^-1 5x]`

= `"d"/"dx"(tan^-1 3x) + "d"/"dx"(tan^-1 5x)`

= `(1)/(1 + (3x)^2)."d"/"dx"(3x) + (1)/(1 + (5x)^2)."d"/"dx"(5x)`

= `(1)/(1 + 9x^2) xx 3 xx 1 + (1)/(1 + 25x^2) xx 5 xx 1`

= `(3)/(1 + 9x^2) + (5)/(1 + 25x^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Miscellaneous Exercise 1 (II) [Page 64]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 1 Differentiation
Miscellaneous Exercise 1 (II) | Q 4.5 | Page 64

RELATED QUESTIONS

If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`


Find  `dy/dx` in the following:

2x + 3y = sin x


Find `dy/dx` in the following:

xy + y2 = tan x + y


Find `dx/dy` in the following.

x2 + xy + y2 = 100


Find `dy/dx` in the following:

sin2 x + cos2 y = 1


Find `dy/dx` in the following:

`y = sin^(-1)((2x)/(1+x^2))`


If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).


Find the derivative of the function f defined by f (x) = mx + c at x = 0.


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if 


Find `"dy"/"dx"` if x = at2, y = 2at.


Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.


DIfferentiate x sin x w.r.t. tan x.


Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`


Differentiate xx w.r.t. xsix.


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.


If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show"  (d^2y)/(dx^2)` = 0.


If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.


If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.


Find the nth derivative of the following:

`(1)/x`


Find the nth derivative of the following : apx+q 


Find the nth derivative of the following : cos x


Find the nth derivative of the following : `(1)/(3x - 5)`


Choose the correct option from the given alternatives :

If y = sin (2sin–1 x), then dx = ........


Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........


Choose the correct option from the given alternatives :

If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........


If y `tan^-1(sqrt((a - x)/(a +  x)))`, where – a < x < a, then `"dy"/"dx"` = .........


Choose the correct option from the given alternatives :

If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........


Choose the correct option from the given alternatives :

If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are


Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).


If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.


Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81


Find `"dy"/"dx"` if, yex + xey = 1 


Choose the correct alternative.

If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2`  then `"dy"/"dx"` = ? 


If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.


State whether the following is True or False:

The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`


If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`


If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.


If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


State whether the following statement is True or False:

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`


y = `e^(x3)`


If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0


Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)


Find `(d^2y)/(dy^2)`, if y = e4x


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


`"If" log(x+y) = log(xy)+a  "then show that", dy/dx=(-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×