Advertisements
Advertisements
Question
Find `dy/dx` in the following:
`y = sin^(-1)((2x)/(1+x^2))`
Solution
y = `sin^-1 ((2x)/(1 + x^2))`
Let, x = tan `theta => theta = tan^-1 x`
`therefore y = sin^-1 ((2 tan theta)/(1 + tan^2 theta))`
`= sin^-1 (sin 2 theta) ... [because sin 2 theta = (2 tan theta)/(1 + tan^2 theta)]`
`= 2 theta`
`y = 2 tan^-1 x`
`therefore dy/dx = 2 d/dx tan^-1 x`
`dy/dx = 2/(1 + x^2)`
APPEARS IN
RELATED QUESTIONS
If y=eax ,show that `xdy/dx=ylogy`
Find `dy/dx` in the following:
ax + by2 = cos y
Find `dx/dy` in the following.
x2 + xy + y2 = 100
If for the function
\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]
If f (x) = |x − 2| write whether f' (2) exists or not.
Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ
Differentiate tan-1 (cot 2x) w.r.t.x.
Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ
Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.
Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.
Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`
If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that" y^2 + "dy"/"dx"` = 0.
Differentiate xx w.r.t. xsix.
Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.
Find the nth derivative of the following : sin (ax + b)
Find the nth derivative of the following : `(1)/(3x - 5)`
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
Choose the correct option from the given alternatives :
If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........
Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`
Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`
If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`
Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
Solve the following:
If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`
`(dy)/(dx)` of `2x + 3y = sin x` is:-
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`
Find `dy/(dx) "if" , x = e^(3t), y = e^sqrtt`.