English

Differentiate Tan-1 (Cot 2x) W.R.T.X. - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate tan-1 (cot 2x) w.r.t.x.

Sum

Solution

Let y = tan-1 (cot 2x)
y = tan-1 `[tan(π/2 - 2x)]`

y = `π/2 - 2x`

Differentiating both sides w.r.tx we get 

`(dy)/(dx) = -2` 

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (October)

APPEARS IN

RELATED QUESTIONS

Find dy/dx if x sin y + y sin x = 0.


Find  `dy/dx` in the following:

2x + 3y = sin x


If for the function 

\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]


Examine the differentialibilty of the function f defined by

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 


Discuss extreme values of the function f(x) = x.logx


If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.


Find `"dy"/"dx"`, if : x = sinθ, y = tanθ


Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`


If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.


Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.


Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.


Find the nth derivative of the following:

`(1)/x`


Find the nth derivative of the following : apx+q 


Find the nth derivative of the following : sin (ax + b)


Find the nth derivative of the following : `(1)/(3x - 5)`


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........


Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`


Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0 


Choose the correct alternative.

If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?


If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______


`(dy)/(dx)` of `2x + 3y = sin x` is:-


If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×