English

Find d2ydx2 of the following : x = a cos θ, y = b sin θ at θ = ππ4. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find d2ydx2 of the following : x = a cos θ, y = b sin θ at θ = π4.

Sum

Solution

x = a cos θ, y = b sin θ

Differentiating x and y w.r.t. θ, we get,

dxdθ=ddθ(acosθ)

dxdθ=addθ(cosθ)

dxdθ=a(sinθ)

dxdθ= asinθ                          ...(1)

and

dydθ=ddθ(bsinθ)

dydθ=bddθ(sinθ)
dydθ=bcosθ

dydx=(dydθ)(dxdθ)

dydx=bcosθasinθ

dydx=(ba)cotθ

and

d2ydx2=ddx[(ba)cotθ]

d2ydx2=ba.ddθ(cotθ)×dθdx

d2ydx2=(ba)(cosec2θ)×1(dxdθ)

d2ydx2=(ba)cosec2θ×1asinθ      ..[By (1)]

d2ydx2=(ba2)cosec3θ

(d2ydx2)atθ=π4=(ba2)cosec3π4

= ba2×(2)3

= 22ba2

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.5 [Page 60]

RELATED QUESTIONS

Find dydx in the following:

sin2 x + cos2 y = 1


Find dydx in the following:

y=sin-1(2x1+x2)


if (x2+y2)2=xy find dydx


If for the function 

Φ(x)=λx2+7x4,Φ(5)=97, find λ.


If  f(x)=x3+7x2+8x9 

, find f'(4).


Find the derivative of the function f defined by f (x) = mx + c at x = 0.


Examine the differentialibilty of the function f defined by

f(x)={2x+3 if 3x2x+1x+2 if 2x<0 if 0x1 


Is |sin x| differentiable? What about cos |x|?


If f (x) = |x − 2| write whether f' (2) exists or not.


Write the derivative of f (x) = |x|3 at x = 0.


If  limxcf(x)f(c)xc  exists finitely, write the value of  limxcf(x)


Differentiate tan-1 (cot 2x) w.r.t.x.


If x = tan-1t and y = t3 , find dydx.


Find dydx if x = a cot θ, y = b cosec θ


Find dydx, if : x = a2+m2,y=log(a2+m2)


Find dydx, if : x = (t+1t)a,y=at+1t, where a > 0, a ≠ 1, t ≠ 0.


Find dydx, if : x=cos-1(4t3-3t),y=tan-1(1-t2t).


Find dydx if : x = cosec2θ, y = cot3θ at θ= π6


Find dydx if : x = t2 + t + 1, y = sin(πt2)+cos(πt2)at t=1


Find dydx if : x = t + 2sin (πt), y = 3t – cos (πt) at t = 12


DIfferentiate x sin x w.r.t. tan x.


Differentiate sin-1(2x1+x2)w.r.t.cos-1(1-x21+x2)


Differentiate tan-1(x1-x2)w.r.t.sec-1(12x2-1).


Differentiate tan-1(cosx1+sinx)w.r.t.sec-1x.


Find d2ydx2 of the following : x = a(θ – sin θ), y = a(1 – cos θ)


If x = cos t, y = emt, show that (1-x2)d2ydx2-xdydx-m2y = 0.


If y = x + tan x, show that cos2x.d2ydx2-2y+2x = 0.


If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.


If 2y = x+1+x-1, show that 4(x2 – 1)y2 + 4xy1 – y = 0.


Find the nth derivative of the following : apx+q 


Find the nth derivative of the following : cos x


Find the nth derivative of the following : cos (3 – 2x)


Choose the correct option from the given alternatives :

If y = tan-1(x1+1-x2)+sin[2tan-1(1-x1+x)]thendydx = ...........


If y tan-1(a-xa+ x), where – a < x < a, then dydx = .........


If x sin (a + y) + sin a . cos (a + y) = 0, then show that dydx=sin2(a+y)sina.


If sin y = x sin (a + y), then show that dydx=sin2(a+y)sina.


If x=exy, then show that dydx=x-yxlogx


DIfferentiate tan-1(1+x2-1x)w.r.t.tan-1(2x1-x21-2x2).


Differentiate log [1+x2+x1+x2-x] w.r.t. cos (log x).


If log y = log (sin x) – x2, show that d2ydx2+4xdydx+(4x2+3)y = 0.


If x= a cos θ, y = b sin θ, show that a2[yd2ydx2+(dydx)2]+b2 = 0.


Find dydx if, yex + xey = 1 


Find dydx if, xy=ex - y


Solve the following:

If x5y7=(x + y)12 then show that, dydx=yx


Solve the following:

If ex+ey=e(x+y) then show that, dydx=-ey - x.


Choose the correct alternative.

If x4.y5=(x + y)m + 1 then dydx=yx then m = ?


dydx of 2x+3y=sinx is:-


Find dydx, if y=sin-1(2x1+x2)


Differentiate w.r.t x (over no. 24 and 25) exsinx


If 2x + 2y = 2x+y, then dydx is equal to ______.


If y = tanx+tanx+tanx+....+ , then show that dydx=sec2x2y-1.

Find dydx at x = 0.


If log(x + y) = log(xy) + a then show that, dydx=-y2x2


Find dydxif,x=e3t,y=et


If log (x+y) = log (xy) + a then show that, dydx=-y2x2


If y = (x+x2-1)m, show that (x2-1)d2ydx2+xdydx = m2y


Solve the following.

If log(x + y) = log(xy) + a then show that, dydx=-y2x2


Find dydx if, x = e3t, y = et


Find dydx if, x=e3t,y=et


Find dydx if, x=e3t,y=et


If log(x + y) = log(xy) + a then show that, dydx=-y2x2


If log(x + y) = log(xy) + a then show that, dydx=y2x2


If log(x + y) = log(xy) + a then show that, dydx=-y2x2


Find dydxif,x=e3t,y=et


Find dydx if,x=e3t,y=et


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.