English

Discuss the Continuity of the Function F at X = 0, Where F(X) = 5 X + 5 − X − 2 Cos 2 X − Cos 6 X , for X ≠ 0 = 1 8 ( Log 5 ) 2 , for X = 0(4) - Mathematics and Statistics

Advertisements
Advertisements

Question

Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0

Sum

Solution

`lim_(x → 0) f(x) = lim_(x → 0)[(5^x + 5^-x - 2)/(cos2x - cos6x)]`

= `lim_(x → 0)[(5^x + 1/5^x - 2)/(2sin4x . sin2x)]`

= `lim_(x → 0)[(5^(2x) + 1 - 2(5^x))/(5^x . 2.sin 4x .sin2x)]`

= `1/2lim_(x → 0)[(5^x - 1)^2/(5^x.sin4x.sin2x)]`

= `1/2lim_(x → 0)[((5^x - 1)/x)^2/(5^x((sin4x)/(4x)).4((sin2x)/(2x)).2)]`

= `1/16 . (lim_(x → 0)((5^x - 1)/x)^2)/(lim_(x → 0)(5^x).lim_(x → 0)((sin4x)/(4x)).lim_(x → 0)((sin2x)/(2x))`

= `1/16 . (log 5)^2/(5^0(1)(1))`

∴ `lim_(x → 0) f(x) = 1/16 (log 5)^2`

 = `1/16 xx 2 log 5`

 = `1/8 log 5`

Given `f(0) = 1/8 (log5)^2`

∴ `lim_(x → 0) f(x) ≠ f(0)`

∴ f is  discontinuous at x = 0. 

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March)

APPEARS IN

RELATED QUESTIONS

Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


For what value of k is the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  continuous at x = 0?

 


If   \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if }  & x = 2\end{cases}\]  is continuous at x = 2, find k.


Find f (0), so that  \[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\]  becomes continuous at x = 0.

 


If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


The value of f (0) so that the function 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^{1/8}}{\left( 5x + 32 \right)^{1/5} - 2},\]  0 is continuous everywhere, is given by


The values of the constants ab and c for which the function  \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are

 


Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

Show that the function 

\[f\left( x \right) = \begin{cases}x^m \sin\left( \frac{1}{x} \right) & , x \neq 0 \\ 0 & , x = 0\end{cases}\]

(i) differentiable at x = 0, if m > 1
(ii) continuous but not differentiable at x = 0, if 0 < m < 1
(iii) neither continuous nor differentiable, if m ≤ 0


Discuss the continuity and differentiability of f (x) = e|x| .


The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.


Examine the continuity off at x = 1, if

f (x) = 5x - 3 , for 0 ≤ x ≤ 1

       = x2 + 1 , for 1 ≤ x ≤ 2


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`


For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).


f(x) = `{{:(|x|cos  1/x",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


f(x) = |x| + |x − 1| at x = 1


If f(x) = `{{:("m"x + 1",",  "if"  x ≤ pi/2),(sin x + "n"",",  "If"  x > pi/2):}`, is continuous at x = `pi/2`, then ______.


If f is continuous on its domain D, then |f| is also continuous on D.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×