Advertisements
Advertisements
प्रश्न
Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
= `1/8(log 5)^2,` for x = 0
उत्तर
`lim_(x → 0) f(x) = lim_(x → 0)[(5^x + 5^-x - 2)/(cos2x - cos6x)]`
= `lim_(x → 0)[(5^x + 1/5^x - 2)/(2sin4x . sin2x)]`
= `lim_(x → 0)[(5^(2x) + 1 - 2(5^x))/(5^x . 2.sin 4x .sin2x)]`
= `1/2lim_(x → 0)[(5^x - 1)^2/(5^x.sin4x.sin2x)]`
= `1/2lim_(x → 0)[((5^x - 1)/x)^2/(5^x((sin4x)/(4x)).4((sin2x)/(2x)).2)]`
= `1/16 . (lim_(x → 0)((5^x - 1)/x)^2)/(lim_(x → 0)(5^x).lim_(x → 0)((sin4x)/(4x)).lim_(x → 0)((sin2x)/(2x))`
= `1/16 . (log 5)^2/(5^0(1)(1))`
∴ `lim_(x → 0) f(x) = 1/16 (log 5)^2`
= `1/16 xx 2 log 5`
= `1/8 log 5`
Given `f(0) = 1/8 (log5)^2`
∴ `lim_(x → 0) f(x) ≠ f(0)`
∴ f is discontinuous at x = 0.
APPEARS IN
संबंधित प्रश्न
Examine the following function for continuity:
`f(x) = (x^2 - 25)/(x + 5), x != -5`
Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\]
Discuss the continuity of the f(x) at the indicated points:
(i) f(x) = | x | + | x − 1 | at x = 0, 1.
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if } x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if } x < 1\end{cases}\]
Discuss the continuity of the function \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if } x < 2 \\ \frac{3x}{2} , & \text{ if } x \geq 2\end{cases}\]
The value of f (0), so that the function
If \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (a, b) for which f (x) cannot be continuous at x = 1, is
If f (x) is differentiable at x = c, then write the value of
Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4
= 10 for x = 4 at x = 4
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
If the function f is continuous at x = 0 then find f(0),
where f(x) = `[ cos 3x - cos x ]/x^2`, `x!=0`
The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.
Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1
f(x) = `{{:(|x|cos 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
The composition of two continuous function is a continuous function.
Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.