मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Discuss the Continuity of the Function F at X = 0, Where F(X) = 5 X + 5 − X − 2 Cos 2 X − Cos 6 X , for X ≠ 0 = 1 8 ( Log 5 ) 2 , for X = 0(4) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0

बेरीज

उत्तर

`lim_(x → 0) f(x) = lim_(x → 0)[(5^x + 5^-x - 2)/(cos2x - cos6x)]`

= `lim_(x → 0)[(5^x + 1/5^x - 2)/(2sin4x . sin2x)]`

= `lim_(x → 0)[(5^(2x) + 1 - 2(5^x))/(5^x . 2.sin 4x .sin2x)]`

= `1/2lim_(x → 0)[(5^x - 1)^2/(5^x.sin4x.sin2x)]`

= `1/2lim_(x → 0)[((5^x - 1)/x)^2/(5^x((sin4x)/(4x)).4((sin2x)/(2x)).2)]`

= `1/16 . (lim_(x → 0)((5^x - 1)/x)^2)/(lim_(x → 0)(5^x).lim_(x → 0)((sin4x)/(4x)).lim_(x → 0)((sin2x)/(2x))`

= `1/16 . (log 5)^2/(5^0(1)(1))`

∴ `lim_(x → 0) f(x) = 1/16 (log 5)^2`

 = `1/16 xx 2 log 5`

 = `1/8 log 5`

Given `f(0) = 1/8 (log5)^2`

∴ `lim_(x → 0) f(x) ≠ f(0)`

∴ f is  discontinuous at x = 0. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\] 

 


Discuss the continuity of the f(x) at the indicated points: 

(i) f(x) = | x | + | x − 1 | at x = 0, 1.


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if }  x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if }  x < 1\end{cases}\]


Discuss the continuity of the function  \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if }  x < 2 \\ \frac{3x}{2} , & \text{ if  } x \geq 2\end{cases}\]


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

If  \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (ab) for which f (x) cannot be continuous at x = 1, is

 


If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4 

= 10 for x = 4  at x = 4


If the function f is continuous at x = 0

Where f(x) = 2`sqrt(x^3 + 1)` + a,  for x < 0,
= `x^3 + a + b,  for x > 0
and f (1) = 2, then find a and b.


If the function f is continuous at x = 0 then find f(0),
where f(x) =  `[ cos 3x - cos x ]/x^2`, `x!=0`


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = `{{:(|x|cos  1/x",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


The composition of two continuous function is a continuous function.


Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×