Advertisements
Advertisements
प्रश्न
Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`
उत्तर
`"f"("x") = {(2"x""," " if", "x" < 0),(0"," " if", 0 le "x" le 1),(4"x" "," " if", "x" > 1):}`
For x < 0, f(x) = 2x;
0 < x < 1, f(x) = 0 and
for x > 1, f(x) = 4 x is a polynomial and continuous function.
So this is a function.
At x = 0,
`lim_(x -> 0^-) "f"(x) = lim_(x -> 0^-)` (2 x)
= `lim_("h" -> 0)` [2 (0 - h)]
= `lim_("h" -> 0)` (-2h)
= - 2 × 0
= 0
`lim_(x -> 0^+) "f"(x) = lim_(x -> 0^+)` (0) = 0
Hence, f is continuous at x = 0.
At x = 1,
`lim_(x -> 1^-) "f"(x) = lim_(x -> 1^-)` (0) = 0
`lim_(x -> 1^+) "f"(x) = lim_(x -> 1^+)` (4x)
= `lim_("h" -> 0)` [4 (1 + h)]
= `lim_("h" -> 0)` (4 + 4h)
= 4 + 4 × 0
= 4
Hence, it is not continuous at x = 1.
APPEARS IN
संबंधित प्रश्न
Find the value of 'k' if the function
`f(X)=(tan7x)/(2x) , "for " x != 0 `
`=k`, for x=0
is continuos at x=0
Examine the following function for continuity:
f(x) = | x – 5|
Show that
\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]
Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]
Determine the value of the constant k so that the function
\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\]
If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if } x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if } x < 1\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
Find all point of discontinuity of the function
Define continuity of a function at a point.
The function
Let \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set
The value of b for which the function
The values of the constants a, b and c for which the function \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are
If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\] is differentiable at x = 1, find a, b.
If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text { is }\]
If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]
If \[f\left( x \right) = \left| \log_e |x| \right|\]
Examine the continuity of f(x)=`x^2-x+9 "for" x<=3`
=`4x+3 "for" x>3, "at" x=3`
Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`
If y = ( sin x )x , Find `dy/dx`
If the function f is continuous at x = 0 then find f(0),
where f(x) = `[ cos 3x - cos x ]/x^2`, `x!=0`
Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1
= `-1/3` for x = 1, at x = 1
Discuss the continuity of the function f(x) = sin x . cos x.
The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.
The function given by f (x) = tanx is discontinuous on the set ______.
Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1
f(x) = `{{:(|x - 4|/(2(x - 4))",", "if" x ≠ 4),(0",", "if" x = 4):}` at x = 4
f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = `{{:(3x - 8",", "if" x ≤ 5),(2"k"",", "if" x > 5):}` at x = 5
f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "if" 0 ≤ x ≤ 1):}` at x = 0
Find the values of a and b such that the function f defined by
f(x) = `{{:((x - 4)/(|x - 4|) + "a"",", "if" x < 4),("a" + "b"",", "if" x = 4),((x - 4)/(|x - 4|) + "b"",", "if" x > 4):}`
is a continuous function at x = 4.
Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))
Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.
`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)` is equal to ____________.