Advertisements
Advertisements
प्रश्न
Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.
उत्तर
We have f(x) = |x – 5|
⇒ f(x) = `{{:(-(x - 5)",", "if" x - 5 < 0 or x < 5),(x - 5",", "if" x - 5 > 0 or x > 5):}`
For continuity at x = 5
L.H.L. `lim_("h" -> 5^-) "f"(x)` = – (x – 5)
= `lim_("h" -> 0) - (5 - "h" - 5)`
= `lim_("h" -> 0) "h" = 0`
R.H.L. `lim_(x -> 5^+) "f"(x)` = x – 5
= `lim_("h" -> 0) (5 + "h" - 5)`
= `lim_("h" -> 0) "h"` = 0
L.H.L. = R.H.L.
So, f(x) is continuous at x = 5
Now, for differentiability
Lf'(5) = `lim_("h" -> 0) ("f"(5 - "h") - "f"(5))/(-"h")`
= `lim_("h" -> 0) (-(5 - "h" - 5) - (5 - 5))/(-"h")`
= `lim_("h" -> 0) "h"/(-"h")`
= – 1
Rf'(5) = `lim_("h" -> 0) ("f"(5 + "h") - "f"(5))/"h"`
= `lim_("h" -> 0) ((5 + "h" - 5) - (5 - 5))/"h"`
= `lim_("h" -> 0) ("h" - 0)/"h"`
= 1
∵ Lf'(5) ≠ Rd'(5)
Hence, f(x) is not differentiable at x = 5.
APPEARS IN
संबंधित प्रश्न
If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]
Find whether f(x) is continuous at x = 0.
Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the function f(x) at the point x = 0, where \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]
For what value of k is the function
\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]
Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for" x < 0),(x, "for" x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for" x > 0):}` is continuous at x = 0.
If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if } & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\] is continuous at x = 4, find a, b.
For what value of k is the following function continuous at x = 2?
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if } x \neq 0 \\ 4 , & \text{ if } x = 0\end{cases}\]
The function \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]
If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is
If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\] , then
The function \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as
If \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (a, b) for which f (x) cannot be continuous at x = 1, is
Give an example of a function which is continuos but not differentiable at at a point.
The set of points where the function f (x) = x |x| is differentiable is
If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is
Examine the continuity of f(x)=`x^2-x+9 "for" x<=3`
=`4x+3 "for" x>3, "at" x=3`
If f(x) = `(e^(2x) - 1)/(ax)` . for x < 0 , a ≠ 0
= 1. for x = 0
= `(log(1 + 7x))/(bx)`. for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b
If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`, x ≠ 0 is continuous at x = 0 , then find f(0).
Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`
Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
= `1/12`, For x = 0
If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`
Show that the function f defined by f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.
f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "if" x ≠ 0),(0",", "if" x = "a"):}` at x = a
f(x) = `{{:(3x - 8",", "if" x ≤ 5),(2"k"",", "if" x > 5):}` at x = 5
Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",", "if" x ≤ 2),(5 - x",", "if" x > 2):}` at x = 2
The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.
Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?