मराठी

The Set of Points Where the Function F (X) = X |X| is Differentiable is (A) ( − ∞ , ∞ ) (B) ( − ∞ , 0 ) ∪ ( 0 , ∞ ) (C) ( 0 , ∞ ) (D) [ 0 , ∞ ] - Mathematics

Advertisements
Advertisements

प्रश्न

The set of points where the function f (x) = x |x| is differentiable is 

 

पर्याय

  • \[\left( - \infty , \infty \right)\]

  • \[\left( - \infty , 0 \right) \cup \left( 0, \infty \right)\]

  • \[\left( 0, \infty \right)\]

  • \[\left[ 0, \infty \right]\]

MCQ

उत्तर

(a) \[\left( - \infty , \infty \right)\]

\[\text{ We have }, \]
\[f\left( x \right) = x\left| x \right|\]

`⇒ f(x) {(-x^2, x<0),(0,x=0),(x^2 , x>0):}`
\[\text{ When, x < 0, we have }\]
\[ f\left( x \right) = - x^2 \text{which being a polynomial function is continuous and differentiable in} \left( - \infty , 0 \right)\]
\[\text{ When, x > 0, we have }\]
\[ f\left( x \right) = x^2 \text{which being a polynomial function is continuous and differentiable in} \left( 0, \infty \right)\]
\[\text{Thus possible point of non - differentiability of} f\left( x \right) is x = 0\]
\[\text{ Now , LHD} \left( at x = 0 \right) = \lim_{x \to 0^-} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ = \lim_{x \to 0^-} \frac{- x^2 - 0}{x}\]
\[ = \lim_{h \to 0} \frac{- \left( - h \right)^2}{- h}\]
\[ = \lim_{h \to 0} h\]
\[ = 0\]
\[\text{ And RHD} \left( \text{ at } x = 0 \right) = \lim_{x \to 0^+} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ = \lim_{x \to 0^+} \frac{x^2 - 0}{x}\]
\[ = \lim_{h \to 0} \frac{h^2}{h}\]
\[ = \lim_{h \to 0} h\]
\[ = 0\]
\[ \therefore \text { LHD } \left( \text { at x } = 0 \right) =\text {  RHD } \left(\text {  at x } = 0 \right)\]
\[{\text{ So }, f\left( x \right) \text{ is also differentiable at } x} = 0\]
\[\text{i . e . }f\left( x \right) \text { is differentiable in }\left( - \infty , \infty \right)\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Differentiability - Exercise 10.4 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 10 Differentiability
Exercise 10.4 | Q 3 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

 If 'f' is continuous at x = 0, then find f(0).

`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`


Determine the value of 'k' for which the following function is continuous at x = 3

`f(x) = {(((x + 3)^2 - 36)/(x - 3),  x != 3), (k,  x = 3):}`


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.

 


Determine the value of the constant k so that the function 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\] 


Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when}  & x \neq 0 \\ k ,\text{ when }  & x = 0\end{cases}\] is continuous at x = 0;

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; 

\[f\left( x \right) = \begin{cases}kx + 1, \text{ if }  & x \leq \pi \\ \cos x, \text{ if }  & x > \pi\end{cases}\] at x = π

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]


Prove that  \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0

 


Discuss the continuity of the function  \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if }  x < 2 \\ \frac{3x}{2} , & \text{ if  } x \geq 2\end{cases}\]


Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?

 


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if }  x \neq 4 \\ k , & \text{ if }  x = 4\end{cases}\]  is continuous at x = 4, find k.


If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


Let f (x) = | x | + | x − 1|, then


Let  \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set

 


If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 


The value of b for which the function 

\[f\left( x \right) = \begin{cases}5x - 4 , & 0 < x \leq 1 \\ 4 x^2 + 3bx , & 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 

The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0


Discuss the continuity of the function f at x = 0

If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0

         = 1,   for x = 0


Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`


If the function f is continuous at x = 0 then find f(0),
where f(x) =  `[ cos 3x - cos x ]/x^2`, `x!=0`


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


If the function f is continuous at x = 2, then find 'k' where

f(x) = `(x^2 + 5)/(x - 1),` for  1< x ≤ 2 
      = kx + 1 , for x > 2


Discuss the continuity of the function f(x) = sin x . cos x.


Show that the function f defined by f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.


Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if"  x ≠ 0),(0",",  "if"  x = 0):}` is discontinuous at x = 0.


A continuous function can have some points where limit does not exist.


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = `{{:(x^2/2",",  "if"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "if"  1 < x ≤ 2):}` at x = 1


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin  1/x",",  "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",",  "if"  x ≤ 2),(5 - x",",  "if"  x > 2):}` at x = 2


Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",",  "if"  x ≤ 1),("q"x + 2",",  "if"  x > 1):}` is differentiable at x = 1


The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.


If f(x) = `x^2 sin  1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.


If f(x) = `{{:("m"x + 1",",  "if"  x ≤ pi/2),(sin x + "n"",",  "If"  x > pi/2):}`, is continuous at x = `pi/2`, then ______.


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×