मराठी

If F ( X ) = ⎧ ⎪ ⎨ ⎪ ⎩ X 2 + B , 0 ≤ X < 1 4 , X = 1 X + 3 , 1 < X ≤ 2 , Then the Value of (A, B) for Which F (X) Cannot Be Continuous at X = 1, is (A) (2, 2) (B) (3, 1) (C) (4, 0) (D) (5, 2) - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (ab) for which f (x) cannot be continuous at x = 1, is

 

पर्याय

  • (2, 2)

  • (3, 1)

  • (4, 0)

  • (5, 2)

MCQ

उत्तर

(5, 2) 

If f(x) is continuous at x = 1, then

\[\lim_{x \to 1^-} f\left( x \right) = f\left( 1 \right)\]

\[\Rightarrow \lim_{h \to 0} f\left( 1 - h \right) = 4 \left[ \because f\left( 1 \right) = 4 \right]\]
\[ \Rightarrow \lim_{h \to 0} a \left( 1 - h \right)^2 + b = 4 \]
\[ \Rightarrow \left( a + b \right) = 4\]

Thus, the possible values of (ab) can be  

\[\left( 2, 2 \right), \left( 3, 1 \right), \left( 4, 0 \right)\] . But
\[\left( a, b \right) \neq \left( 5, 2 \right)\].

Hence, for  

\[\left( a, b \right) = \left( 5, 2 \right)\],
\[f\left( x \right)\]  cannot be continuous at = 1.

 

shaalaa.com

Notes

Disclaimer: The question in the book has some error. The solution here is created according to the question given in the book.

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.4 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.4 | Q 32 | पृष्ठ ४६

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`

is continuous at x = 0, then find the values of a and b.


Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


A function f(x) is defined as,

\[f\left( x \right) = \begin{cases}\frac{x^2 - x - 6}{x - 3}; if & x \neq 3 \\ 5 ; if & x = 3\end{cases}\]  Show that f(x) is continuous that x = 3.

If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.

 


If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]

Find whether f(x) is continuous at x = 0.

 

Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.

 

 


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}(x - a)\sin\left( \frac{1}{x - a} \right), & x \neq a \\ 0 , & x = a\end{array}at x = a \right.\]

 


Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{1 - x^n}{1 - x}, & x \neq 1 \\ n - 1 , & x = 1\end{array}n \in N \right.at x = 1\]

Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\] 


For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\] 

 


Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\]  is continuous at x = 1.

 


The function 

\[f\left( x \right) = \frac{4 - x^2}{4x - x^3}\]

 


If  \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals

 


The function  \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]

 


Is every continuous function differentiable?


Write the points of non-differentiability of 

\[f \left( x \right) = \left| \log \left| x \right| \right| .\]

The function f (x) = e|x| is


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is


Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .


Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3`   for x = 1


Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]`           For x ≠ 1
                    = `-1/3`                                                 For x = 1


If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0


Discuss the continuity of the function f at x = 0

If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0

         = 1,   for x = 0


Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`


If the function f is continuous at x = 0 then find f(0),
where f(x) =  `[ cos 3x - cos x ]/x^2`, `x!=0`


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0


The function f(x) = |x| + |x – 1| is ______.


The value of k which makes the function defined by f(x) = `{{:(sin  1/x",",  "if"  x ≠ 0),("k"",",  "if"  x = 0):}`, continuous at x = 0 is ______.


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.


If f is continuous on its domain D, then |f| is also continuous on D.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×