Advertisements
Advertisements
प्रश्न
Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]` For x ≠ 1
= `-1/3` For x = 1
उत्तर
Given f(1) = `-1/3` (i)
Now `lim_( x -> 1 ) = lim_( x -> 1 ) ([ 3 - sqrt (2x + 7) ]/[ x - 1 ])`
= `lim_( x -> 1 ) [ 3 - sqrt( 2x + 7 )]/[ x - 1 ] xx [ 3 + sqrt( 2x + 7 ) ]/[ 3 + sqrt( 2x + 7 )]`
= `lim_( x -> 1) [ 9 - (2x + 7) ]/[( x - 1)( 3 + sqrt( 2x + 7 ))]`
= `lim_( x -> 1) [ 2 - 2x ]/[( x - 1)( 3 + sqrt( 2x + 7)]`
= `lim_( x -> 1) [ -2( x - 1 )]/[( x - 1)( 3 + sqrt( 2x + 7)]`
= `lim_( x -> 1) [ -2]/[3 + sqrt( 2x + 7]`
= `[ - 2 ]/[ 3 + sqrt 9] = -2/6 = -1/3`
`therefore lim_( x -> 1) f(x) = -1/3` (ii)
From (i) and (ii), `lim_( x -> 1) f(x) = f(1)`
∴ f is continuous at x = 1.
APPEARS IN
संबंधित प्रश्न
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the function f(x) at the point x = 0, where \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]
If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if } & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\] is continuous at x = 4, find a, b.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5
Discuss the continuity of the function \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if } x < 2 \\ \frac{3x}{2} , & \text{ if } x \geq 2\end{cases}\]
Define continuity of a function at a point.
If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\] , then
If \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (a, b) for which f (x) cannot be continuous at x = 1, is
Discuss the continuity and differentiability of f (x) = e|x| .
The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is
Find k, if the function f is continuous at x = 0, where
`f(x)=[(e^x - 1)(sinx)]/x^2`, for x ≠ 0
= k , for x = 0
If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0
Discuss the continuity of the function f at x = 0
If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0
= 1, for x = 0
Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.
f (x) = `(sin^2 5x)/x^2` for x ≠ 0
= 5 for x = 0, at x = 0
Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}`
y = |x – 1| is a continuous function.
f(x) = `{{:((1 - cos 2x)/x^2",", "if" x ≠ 0),(5",", "if" x = 0):}` at x = 0
The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.
If the following function is continuous at x = 2 then the value of k will be ______.
f(x) = `{{:(2x + 1",", if x < 2),( k",", if x = 2),(3x - 1",", if x > 2):}`