Advertisements
Advertisements
प्रश्न
Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]` For x ≠ 1
= `-1/3` For x = 1
उत्तर
Given f(1) = `-1/3` (i)
Now `lim_( x -> 1 ) = lim_( x -> 1 ) ([ 3 - sqrt (2x + 7) ]/[ x - 1 ])`
= `lim_( x -> 1 ) [ 3 - sqrt( 2x + 7 )]/[ x - 1 ] xx [ 3 + sqrt( 2x + 7 ) ]/[ 3 + sqrt( 2x + 7 )]`
= `lim_( x -> 1) [ 9 - (2x + 7) ]/[( x - 1)( 3 + sqrt( 2x + 7 ))]`
= `lim_( x -> 1) [ 2 - 2x ]/[( x - 1)( 3 + sqrt( 2x + 7)]`
= `lim_( x -> 1) [ -2( x - 1 )]/[( x - 1)( 3 + sqrt( 2x + 7)]`
= `lim_( x -> 1) [ -2]/[3 + sqrt( 2x + 7]`
= `[ - 2 ]/[ 3 + sqrt 9] = -2/6 = -1/3`
`therefore lim_( x -> 1) f(x) = -1/3` (ii)
From (i) and (ii), `lim_( x -> 1) f(x) = f(1)`
∴ f is continuous at x = 1.
APPEARS IN
संबंधित प्रश्न
Show that
is discontinuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]
Show that
\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1
Discuss the continuity of the f(x) at the indicated points: f(x) = | x − 1 | + | x + 1 | at x = −1, 1.
Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if } x < \frac{\pi}{2} \\ a , & \text{ if } x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if } x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if } x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if } x < 1\end{cases}\]
The function
The function \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]
If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is
The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] continuous at x = 0, is
The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]
Give an example of a function which is continuos but not differentiable at at a point.
Write the points where f (x) = |loge x| is not differentiable.
The function f (x) = e−|x| is
Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then
The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.
If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.
The value of k which makes the function defined by f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}`, continuous at x = 0 is ______.
The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.