हिंदी

The Points of Discontinuity of the Function F ( X ) = ⎧ ⎪ ⎨ ⎪ ⎩ 1 5 ( 2 X 2 + 3 ) , X ≤ 1 6 − 5 X , 1 < X < 3 X − 3 , X ≥ 3 I S ( a R E ) (A) X = 1 (B) X = 3 (C) X = 1, 3 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  

विकल्प

  •  x = 1

  • x = 3

  •  x = 1, 3

  • none of these

MCQ

उत्तर

x = 3 

If \[x \leq 1\] , then

\[f\left( x \right) = \frac{1}{5}\left( 2 x^2 + 3 \right)\] .

Since 

\[2 x^2 + 3\] is a polynomial function and 
\[\frac{1}{5}\] is a constant function, both of them are continuous. So, their product will also be continuous.

 Thus, 

\[f\left( x \right)\]  is continuous at   \[x \leq 1\] 

If \[1 < x < 3\], then

\[f\left( x \right) = 6 - 5x\] .
Since  
\[5x\] is a polynomial function and  \[6\]  is a constant function, both of them are continuous. So, their difference will also be continuous. 
Thus, 
\[f\left( x \right)\]  is continuous for every  \[1 < x < 3\] 

If  \[x \geq 3\], then \[f\left( x \right) = x - 3\]

Since  
\[x - 3\]  is a polynomial function, it is continuous. So,
\[f\left( x \right)\]  is continuous for every   \[x \geq 3\]
Now,
Consider the point   \[x = 1\] . Here,

 \[\lim_{x \to 1^-} f\left( x \right) = \lim_{h \to 0} f\left( 1 - h \right) = \lim_{h \to 0} \left( \frac{1}{5}\left[ 2 \left( 1 - h \right)^2 + 3 \right] \right) = 1\]

\[\lim_{x \to 1^+} f\left( x \right) = \lim_{h \to 0} f\left( 1 + h \right) = \lim_{h \to 0} \left( 6 - 5\left( 1 + h \right) \right) = 1\]

Also,

\[f\left( 1 \right) = \frac{1}{5}\left( 2 \left( 1 \right)^2 + 3 \right) = 1\]

Thus,

\[\lim_{x \to 1^-} f\left( x \right) = \lim_{x \to 1^+} f\left( x \right) = f\left( 1 \right)\]

 Hence

\[f\left( x \right)\] is continuous at  \[x = 1\] .

Now,
Consider the point 

\[x = 3\]. Here,
\[\lim_{x \to 3^-} f\left( x \right) = \lim_{h \to 0} f\left( 3 - h \right) = \lim_{h \to 0} \left( 6 - 5\left( 3 - h \right) \right) = - 9\]
\[\lim_{x \to 3^+} f\left( x \right) = \lim_{h \to 0} f\left( 3 + h \right) = \lim_{h \to 0} \left( \left( 3 + h \right) - 3 \right) = 0\]
Also,
\[f\left( 1 \right) = \frac{1}{5}\left( 2 \left( 1 \right)^2 + 3 \right) = 1\]

Thus,

\[\lim_{x \to 3^-} f\left( x \right) \neq \lim_{x \to 3^+} f\left( x \right)\]

Hence,

\[f\left( x \right)\] is discontinuous at  \[x = 3\] .

So, the only point of discontinuity of 

\[f\left( x \right)\] is  \[x = 3\] .
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.4 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.4 | Q 40 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Examine the continuity of the following function :

`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`


Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


A function f(x) is defined as 

\[f\left( x \right) = \begin{cases}\frac{x^2 - 9}{x - 3}; if & x \neq 3 \\ 6 ; if & x = 3\end{cases}\]

Show that f(x) is continuous at x = 3

 

If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.

 


Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}(x - a)\sin\left( \frac{1}{x - a} \right), & x \neq a \\ 0 , & x = a\end{array}at x = a \right.\]

 


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - 1 \right|}{x - 1}, for & x \neq 1 \\ 2 , for & x = 1\end{cases}at x = 1\]

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{2\left| x \right| + x^2}{x}, & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]

Show that 

\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]


Find the value of 'a' for which the function f defined by

\[f\left( x \right) = \begin{cases}a\sin\frac{\pi}{2}(x + 1), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\]  is continuous at x = 0.
 

 


For what value of k is the following function continuous at x = 2? 

\[f\left( x \right) = \begin{cases}2x + 1 ; & \text{ if } x < 2 \\ k ; & x = 2 \\ 3x - 1 ; & x > 2\end{cases}\]

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if }   x \neq 0 \\ 4 , & \text{ if }  x = 0\end{cases}\]

 


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\frac{e^x - 1}{\log_e (1 + 2x)}, & \text{ if }x \neq 0 \\ 7 , & \text{ if } x = 0\end{cases}\]

Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?

 


Given the function  
\[f\left( x \right) = \frac{1}{x + 2}\] . Find the points of discontinuity of the function f(f(x)).

The value of f (0) so that the function 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^{1/8}}{\left( 5x + 32 \right)^{1/5} - 2},\]  0 is continuous everywhere, is given by


If  \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals


If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]


Examine the continuity of f(x)=`x^2-x+9  "for"  x<=3`

=`4x+3  "for"  x>3,  "at"  x=3` 


Find k, if the function f is continuous at x = 0, where

`f(x)=[(e^x - 1)(sinx)]/x^2`,      for x ≠ 0

     = k                             ,        for x = 0


Discuss the continuity of the function f at x = 0

If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0

         = 1,   for x = 0


The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.


 If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`,  x ≠ 0 is continuous at x = 0 , then find f(0).


Examine the continuity of the following function :

`{:(,f(x),=(x^2-16)/(x-4),",","for "x!=4),(,,=8,",","for "x=4):}} " at " x=4`


If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`


y = |x – 1| is a continuous function.


A continuous function can have some points where limit does not exist.


f(x) = `{{:(|x - 4|/(2(x - 4))",", "if"  x ≠ 4),(0",", "if"  x = 4):}` at x = 4


f(x) = `{{:(|x|cos  1/x",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "if"  x ≠ 2),("k"",",  "if"  x = 2):}` at x = 2


Find the values of a and b such that the function f defined by
f(x) = `{{:((x - 4)/(|x - 4|) + "a"",",  "if"  x < 4),("a" + "b"",",  "if"  x = 4),((x - 4)/(|x - 4|) + "b"",", "if"  x > 4):}`
is a continuous function at x = 4.


Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))


An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.


`lim_("x" -> 0) (2  "sin x - sin"  2 "x")/"x"^3` is equal to ____________.


`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)`  is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×