Advertisements
Advertisements
प्रश्न
The function f (x) = e−|x| is
विकल्प
continuous everywhere but not differentiable at x = 0
continuous and differentiable everywhere
not continuous at x = 0
none of these
उत्तर १
continuous everywhere but not differentiable at x = 0
Given:
`f(x) = e^(-|x|) = {(e^x , xge0),(e^(-x) ,x< 0):}`
\[\text{ Continuity }: \]
\[ \lim_{x \to 0^-} f(x) \]
\[ = \lim_{h \to 0} f(0 - h) \]
\[ = \lim_{h \to 0} e^{- (0 - h)} \]
\[ = \lim_{h \to 0} e^h \]
\[ = 1\]
RHL at x = 0
\[\lim_{x \to 0^+} f(x) \]
\[ = \lim_{h \to 0} f(0 + h) \]
\[ = \lim_{h \to 0} e^{(0 + h)} \]
\[ = 1\]
and f(0) =
Thus,
Hence, function is continuous at x = 0
Differentiability at x = 0
(LHD at x = 0)
\[\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0}\]
\[ = \lim_{h \to 0} \frac{f(0 - h) - f(0)}{0 - h - 0}\]
\[ = \lim_{h \to 0} \frac{e^{- (0 - h)} - 1}{- h}\]
\[ = \lim_{h \to 0} \frac{e^h}{h} \]
\[ = \infty\]
Therefore, left hand derivative does not exist.
Hence, the function is not differentiable at x = 0.
उत्तर २
continuous everywhere but not differentiable at x = 0
Explanation:
- Continuity: The function f(x) = e−∣x∣ is continuous everywhere because both e−x and ex are continuous functions, and the absolute value function ∣x∣ does not introduce any discontinuities.
- Differentiability: At x = 0, f(x) is not differentiable because the derivative from the left and the right do not match.
- For x > 0: f′(x) = −e−x
- For x < 0: f′(x) = ex
- At x = 0: The derivative changes abruptly due to the absolute value term, making the function non-differentiable at x = 0.
Thus, f(x) is continuous everywhere but not differentiable at x = 0.
APPEARS IN
संबंधित प्रश्न
Find the value of 'k' if the function
`f(X)=(tan7x)/(2x) , "for " x != 0 `
`=k`, for x=0
is continuos at x=0
Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`
Discuss the continuity of the following functions at the indicated point(s):
(i) \[f\left( x \right) = \begin{cases}\left| x \right| \cos\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{cases}at x = 0\]
Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]
Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\]
For what value of k is the function
\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if } x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if } x < 1\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}5 , & \text{ if } & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if } & x \geq 10\end{cases}\]
Find the values of a and b so that the function f(x) defined by \[f\left( x \right) = \begin{cases}x + a\sqrt{2}\sin x , & \text{ if }0 \leq x < \pi/4 \\ 2x \cot x + b , & \text{ if } \pi/4 \leq x < \pi/2 \\ a \cos 2x - b \sin x, & \text{ if } \pi/2 \leq x \leq \pi\end{cases}\]becomes continuous on [0, π].
Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?
Find f (0), so that \[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\] becomes continuous at x = 0.
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if } x \neq 4 \\ k , & \text{ if } x = 4\end{cases}\] is continuous at x = 4, find k.
Let \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set
The values of the constants a, b and c for which the function \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are
If \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to
Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).
Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.
Let f (x) = |x| and g (x) = |x3|, then
The function f (x) = sin−1 (cos x) is
Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .
Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`
Find the value of k for which the function f (x ) = \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .
The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.
If f(x) = `(e^(2x) - 1)/(ax)` . for x < 0 , a ≠ 0
= 1. for x = 0
= `(log(1 + 7x))/(bx)`. for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b
Examine the continuity of the following function :
f(x) = x2 - x + 9, for x ≤ 3
= 4x + 3, for x > 3
at x = 3.
Examine the continuity of the followin function :
`{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`
If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`
The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.
Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1
f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "if" x ≠ 0),(1/2",", "if" x = 0):}` at x = 0
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.
If the following function is continuous at x = 2 then the value of k will be ______.
f(x) = `{{:(2x + 1",", if x < 2),( k",", if x = 2),(3x - 1",", if x > 2):}`