Advertisements
Advertisements
प्रश्न
The values of the constants a, b and c for which the function \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are
विकल्प
\[a = \log_e \left( \frac{2}{3} \right), b = - \frac{2}{3}, c = 1\]
\[a = \log_e \left( \frac{2}{3} \right), b = \frac{2}{3}, c = - 1\]
\[a = \log_e \left( \frac{2}{3} \right), b = \frac{2}{3}, c = 1\]
none of these
उत्तर
\[\text{ Given }: f\left( x \right) = \begin{cases}\left( 1 + ax \right)^\frac{1}{x} , x < 0 \\ b, x = 0 \\ \frac{\left( x + c \right)^\frac{1}{3} - 1}{\left( x + 1 \right)^\frac{1}{2} - 1}, x > 0\end{cases}\]
If \[f\left( x \right)\] is continuous at \[x = 0\] then
\[ \Rightarrow \lim_{h \to 0} f\left( - h \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( 1 - ah \right)^\frac{- 1}{h} = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( a\frac{\log \left( 1 - ah \right)}{- ah} \right) = \log b\]
\[ \Rightarrow a \times 1 = \log b \left[ \because \lim_{x \to 0} \frac{\log \left( 1 + x \right)}{x} = 1 \right]\]
\[ \Rightarrow a = \log b\]
\[\Rightarrow \lim_{x \to 0^+} f\left( x \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} f\left( h \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{\left( h + 1 \right)^\frac{1}{2} - 1} \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{\left( h + 1 \right)^\frac{1}{2} - 1} \times \frac{\left( h + 1 \right)^\frac{1}{2} + 1}{\left( h + 1 \right)^\frac{1}{2} + 1} \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{h} \times \left( \left( h + 1 \right)^\frac{1}{2} + 1 \right) \right) = b\]
\[ \Rightarrow \lim_{h \to 0} \frac{\left( h + c \right)^\frac{1}{3} - 1}{h} \times \lim_{h \to 0} \left( \left( h + 1 \right)^\frac{1}{2} + 1 \right) = b\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{h} \right) \times 2 = b\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1^\frac{1}{3}}{\left( h + c \right) - c} \right) = \frac{b}{2}\]
\[ \Rightarrow \frac{c^\left( \frac{1}{3} - 1 \right)}{3} = \frac{b}{2} \left[ \because \lim_{x \to a} \frac{x^n - a^n}{x - a} = n a^{n - 1} , \text{ where }c = 1 \right]\]
\[ \Rightarrow \frac{1}{3} = \frac{b}{2}\]
\[ \Rightarrow \frac{2}{3} = b\]
\[ \therefore a = \log\frac{2}{3}\]
APPEARS IN
संबंधित प्रश्न
Examine the continuity of the following function :
`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`
Examine the following function for continuity:
`f (x)1/(x - 5), x != 5`
Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the function f(x) at the point x = 0, where \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]
For what value of k is the function
If \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if } & x = 2\end{cases}\] is continuous at x = 2, find k.
Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when} & x \neq 0 \\ k ,\text{ when } & x = 0\end{cases}\] is continuous at x = 0;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if } x \neq 4 \\ k , & \text{ if } x = 4\end{cases}\] is continuous at x = 4, find k.
If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1
If \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals
Let \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set
If \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then
The value of f (0) so that the function
The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] continuous at x = 0, is
Show that f(x) = |x − 2| is continuous but not differentiable at x = 2.
Define differentiability of a function at a point.
If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\] then f (x) is
Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is
Find the value of k for which the function f (x ) = \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
If the function
f(x) = x2 + ax + b, x < 2
= 3x + 2, 2≤ x ≤ 4
= 2ax + 5b, 4 < x
is continuous at x = 2 and x = 4, then find the values of a and b
Discuss the continuity of the function f(x) = sin x . cos x.
If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.
Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if" x ≠ 0),(0",", "if" x = 0):}` is discontinuous at x = 0.
The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at ______.
The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.
The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.
Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))
Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",", "if" x ≤ 2),(5 - x",", "if" x > 2):}` at x = 2
Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.
`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)` is equal to ____________.