हिंदी

The Values of the Constants A, B and C for Which the Function F ( X ) = ⎧⎪ ⎪⎨⎪⎪⎪ ⎩ ( 1 + a X ) 1 / X , X < 0 B , X = 0 ( X + C ) 1 / 3 − 1 ( X + 1 ) 1 / 2 − 1 , X > 0 May Be Continuous at X = 0, Are - Mathematics

Advertisements
Advertisements

प्रश्न

The values of the constants ab and c for which the function  \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are

 

विकल्प

  • \[a = \log_e \left( \frac{2}{3} \right), b = - \frac{2}{3}, c = 1\] 

  • \[a = \log_e \left( \frac{2}{3} \right), b = \frac{2}{3}, c = - 1\]

  • \[a = \log_e \left( \frac{2}{3} \right), b = \frac{2}{3}, c = 1\]

  • none of these

MCQ

उत्तर

\[ a = \log\frac{2}{3}, b = \frac{2}{3}, c = 1\]

\[\text{ Given }: f\left( x \right) = \begin{cases}\left( 1 + ax \right)^\frac{1}{x} , x < 0 \\ b, x = 0 \\ \frac{\left( x + c \right)^\frac{1}{3} - 1}{\left( x + 1 \right)^\frac{1}{2} - 1}, x > 0\end{cases}\]

If  \[f\left( x \right)\]  is continuous at  \[x = 0\]  then

\[\lim_{x \to 0^-} f\left( x \right) = \lim_{x \to 0^+} f\left( x \right) = f\left( 0 \right)\]
\[\Rightarrow \lim_{x \to 0^-} f\left( x \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} f\left( - h \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( 1 - ah \right)^\frac{- 1}{h} = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( a\frac{\log \left( 1 - ah \right)}{- ah} \right) = \log b\]
\[ \Rightarrow a \times 1 = \log b \left[ \because \lim_{x \to 0} \frac{\log \left( 1 + x \right)}{x} = 1 \right]\]
\[ \Rightarrow a = \log b\]
Also,
\[\lim_{x \to 0^+} f\left( x \right) = f\left( 0 \right)\]

\[\Rightarrow \lim_{x \to 0^+} f\left( x \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} f\left( h \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{\left( h + 1 \right)^\frac{1}{2} - 1} \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{\left( h + 1 \right)^\frac{1}{2} - 1} \times \frac{\left( h + 1 \right)^\frac{1}{2} + 1}{\left( h + 1 \right)^\frac{1}{2} + 1} \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{h} \times \left( \left( h + 1 \right)^\frac{1}{2} + 1 \right) \right) = b\]
\[ \Rightarrow \lim_{h \to 0} \frac{\left( h + c \right)^\frac{1}{3} - 1}{h} \times \lim_{h \to 0} \left( \left( h + 1 \right)^\frac{1}{2} + 1 \right) = b\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{h} \right) \times 2 = b\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1^\frac{1}{3}}{\left( h + c \right) - c} \right) = \frac{b}{2}\]
\[ \Rightarrow \frac{c^\left( \frac{1}{3} - 1 \right)}{3} = \frac{b}{2} \left[ \because \lim_{x \to a} \frac{x^n - a^n}{x - a} = n a^{n - 1} , \text{ where }c = 1 \right]\]
\[ \Rightarrow \frac{1}{3} = \frac{b}{2}\]
\[ \Rightarrow \frac{2}{3} = b\]
\[ \therefore a = \log\frac{2}{3}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.4 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.4 | Q 37 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Examine the continuity of the following function :

`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`


Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.

 


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{2\left| x \right| + x^2}{x}, & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]

Discuss the continuity of the function f(x) at the point x = 0, where  \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]

 


For what value of k is the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  continuous at x = 0?

 


If   \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if }  & x = 2\end{cases}\]  is continuous at x = 2, find k.


Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when}  & x \neq 0 \\ k ,\text{ when }  & x = 0\end{cases}\] is continuous at x = 0;

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  

\[f\left( x \right) = \begin{cases}k( x^2 - 2x), \text{ if }  & x < 0 \\ \cos x, \text{ if }  & x \geq 0\end{cases}\] at x = 0

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if }  x \neq 4 \\ k , & \text{ if }  x = 4\end{cases}\]  is continuous at x = 4, find k.


If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1


If  \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals

 


Let  \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set

 


If  \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then 


The value of f (0) so that the function 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^{1/8}}{\left( 5x + 32 \right)^{1/5} - 2},\]  0 is continuous everywhere, is given by


The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]    continuous at x = 0, is

 


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Define differentiability of a function at a point.

 

If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\]  then f (x) is 


Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is 


Find the value of k for which the function f (x ) =  \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .

 
 

If the function f is continuous at x = 2, then find 'k' where

f(x) = `(x^2 + 5)/(x - 1),` for  1< x ≤ 2 
      = kx + 1 , for x > 2


If the function
f(x) = x2 + ax + b,         x < 2

      = 3x + 2,                 2≤ x ≤ 4

      = 2ax + 5b,             4 < x

is continuous at x = 2 and x = 4, then find the values of a and b


Discuss the continuity of the function f(x) = sin x . cos x.


If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.


Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if"  x ≠ 0),(0",",  "if"  x = 0):}` is discontinuous at x = 0.


The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at ______.


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.


Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))


Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",",  "if"  x ≤ 2),(5 - x",",  "if"  x > 2):}` at x = 2


Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.


`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)`  is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×