हिंदी

If F ( X ) = { 1 1 + E 1 / X , X ≠ 0 0 , X = 0 Then F (X) is (A) Continuous as Well as Differentiable at X = 0 (B) Continuous but Not Differentiable at X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\]  then f (x) is 

विकल्प

  • continuous as well as differentiable at x = 0

  • continuous but not differentiable at x = 0

  • differentiable but not continuous at x = 0

  • none of these

MCQ

उत्तर

(d) none of these 

we have,

\[(\text{ LHL at x } = 0 )\]
\[ = {lim}_{x \to 0^-} f(x) = {lim}_{h \to 0} f(0 - h) = {lim}_{h \to 0} f( - h)\]
\[ = {lim}_{h \to 0} \frac{1}{1 + e^{1/ - h}}\]
\[ = {lim}_{h \to 0} \frac{1}{1 + \frac{1}{e^{1/h}}} [ {lim}_{h \to 0} \frac{1}{e^{1/h}} = 0] \]
\[ = \frac{1}{1 + 0}\]
\[ = 1\]
\[(\text { RHL at x } = 0) \]
\[ = {lim}_{x \to 0^+} f(x) = {lim}_{h \to 0} f(0 + h)\]
\[ = {lim}_{h \to 0} \frac{1}{1 + e^{1/h}}\]
\[ = \frac{1}{1 + e^{1/0}} = \frac{1}{1 + e^\infty} = \frac{1}{1 + \infty} \]

So, f(x) is not continuous at x = 0
Differentiability at x = 0

\[(\text { LHD at x } = 0 )\]
\[ = {lim}_{x \to 0^-} \frac{f(x) - f(0)}{x - 0}\]
\[ = {lim}_{h \to 0} \frac{f(0 - h) - f(0)}{0 - h - 0}\]
\[ = {lim}_{h \to 0} \frac{f( - h) - 0}{- h}\]
\[ = {lim}_{h \to 0} \frac{\frac{1}{1 + e^{1/ - h}}}{- h}\]
\[ = {lim}_{h \to 0} \frac{\frac{1}{1 + \frac{1}{e^{1/ h}}}}{- h} \]
\[ = {lim}_{h \to 0} \frac{\frac{1}{1 + 0}}{- h} = {lim}_{h \to 0} \frac{1}{- h} = - \infty \]
\[(\text { RHD at x } = 0) \]
\[ = {lim}_{x \to 0^+} \frac{f(x) - f(0)}{x - 0}\]
\[ = {lim}_{h \to 0} \frac{f(0 + h) - f(0)}{0 + h - 0}\]
\[ = {lim}_{h \to 0} \frac{f(h) - 0}{h}\]
\[ = {lim}_{h \to 0} \frac{\frac{1}{1 + e^{1/ h}}}{h} = \infty \]
\[\text{So, f(x) is also not differentiable at x} = 0 . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Differentiability - Exercise 10.4 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 10 Differentiability
Exercise 10.4 | Q 23 | पृष्ठ १९

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.

 

 


Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Show that 

\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]


Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\] 


For what value of k is the function 

\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]


If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\] 

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{x^4 + x^3 + 2 x^2}{\tan^{- 1} x}, & \text{ if } x \neq 0 \\ 10 , & \text{ if }  x = 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}5 , & \text{ if }  & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if }  & x \geq 10\end{cases}\]


Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?

 


If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1


The values of the constants ab and c for which the function  \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are

 


The points of discontinuity of the function 

\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\] 


Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.


If f is defined by f (x) = x2, find f'(2).


If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

Write the points where f (x) = |loge x| is not differentiable.


Write the points of non-differentiability of 

\[f \left( x \right) = \left| \log \left| x \right| \right| .\]

If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\] 

then at x = 0, f (x)


Let f (x) = |sin x|. Then,


Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is 


Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`


Find k, if the function f is continuous at x = 0, where

`f(x)=[(e^x - 1)(sinx)]/x^2`,      for x ≠ 0

     = k                             ,        for x = 0


Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`


If y = ( sin x )x , Find `dy/dx`


Discuss the continuity of the function f(x) = sin x . cos x.


If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)`  so that f (x) becomes continuous at x = `pi/4`


Let f(x) = `{{:((1 - cos 4x)/x^2",",  "if"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if"  x > 0):}`. For what value of a, f is continuous at x = 0?


The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.


f(x) = `{{:(|x - 4|/(2(x - 4))",", "if"  x ≠ 4),(0",", "if"  x = 4):}` at x = 4


f(x) = `{{:(|x|cos  1/x",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0 


f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "if"  x ≠ 2),("k"",",  "if"  x = 2):}` at x = 2


f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "if"  0 ≤ x ≤ 1):}` at x = 0


Prove that the function f defined by 
f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.


If f(x) = `x^2 sin  1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.


The value of k (k < 0) for which the function f defined as

f(x) = `{((1-cos"kx")/("x"sin"x")","  "x" ≠ 0),(1/2","  "x" = 0):}`

is continuous at x = 0 is:


Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×