Advertisements
Advertisements
प्रश्न
If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\]
then at x = 0, f (x)
विकल्प
has no limit
is discontinuous
is continuous but not differentiable
is differentiable
उत्तर
(b) is discontinuous
\[\text{We have}, \]
\[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . , \]
\[\text{When x = 0 then } x^2 = 0\]
\[ \text { and } \frac{x^2}{1 + x^2} = 0\]
\[ \therefore f\left( 0 \right) = 0 + 0 + 0 + 0 . . . . . . . \]
\[ \Rightarrow f\left( 0 \right) = 0\]
\[\text { When, x } \neq 0\]
\[\text{Then,} x^2 > 0\]
\[\text { and }1 + x^2 > x^2 \]
\[ \Rightarrow 0 < \frac{x^2}{1 + x^2} < 1\]
\[ \therefore \lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \left( x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . , \right)\]
\[ = \lim_{x \to 0} \left[ x^2 \left( 1 + \frac{1}{1 + x^2} + \frac{1}{\left( 1 + x^2 \right)} + . . . + \frac{1}{\left( 1 + x^2 \right)} + . . . . , \right) \right]\]
\[ = \lim_{x \to 0} \left[ x^2 \left( \frac{1}{1 - \frac{1}{1 + x^2}} \right) \right] \left[ \text{Sum of infinite series where}, r = \frac{1}{1 + x^2} \right]\]
\[ = \lim_{x \to 0} \left[ x^2 \left( \frac{1 + x^2}{x^2} \right) \right]\]
\[ = \lim_{x \to 0} \left( 1 + x^2 \right)\]
\[ = 1\]
\[ \therefore \lim_{x \to 0} f\left( x \right) \neq f\left( 0 \right)\]
\[ \therefore f\left( x \right) \text { is discontinuous at } x = 0\]
APPEARS IN
संबंधित प्रश्न
Discuss the continuity of the function f, where f is defined by `f(x) = {(3, ","if 0 <= x <= 1),(4, ","if 1 < x < 3),(5, ","if 3 <= x <= 10):}`
Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
(i) \[f\left( x \right) = \begin{cases}\left| x \right| \cos\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{cases}at x = 0\]
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when} & x \neq 0 \\ k ,\text{ when } & x = 0\end{cases}\] is continuous at x = 0;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]
Discuss the continuity of the f(x) at the indicated points: f(x) = | x − 1 | + | x + 1 | at x = −1, 1.
Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if } x < \frac{\pi}{2} \\ a , & \text{ if } x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if } x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.
Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\] is continuous at x = 1.
The function \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as
If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\] is differentiable at x = 1, find a, b.
Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.
Write the points where f (x) = |loge x| is not differentiable.
Write the points of non-differentiability of
If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text { is }\]
If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]
If \[f\left( x \right) = \left| \log_e |x| \right|\]
If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is
If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\] then f (x) is
Examine the continuity off at x = 1, if
f (x) = 5x - 3 , for 0 ≤ x ≤ 1
= x2 + 1 , for 1 ≤ x ≤ 2
If y = ( sin x )x , Find `dy/dx`
Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
= `1/12`, For x = 0
Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
= `1/8(log 5)^2,` for x = 0
Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if" x ≠ 0),(0",", "if" x = 0):}` is discontinuous at x = 0.
The function f(x) = |x| + |x – 1| is ______.
The value of k which makes the function defined by f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}`, continuous at x = 0 is ______.
The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.
A continuous function can have some points where limit does not exist.
f(x) = `{{:(3x + 5",", "if" x ≥ 2),(x^2",", "if" x < 2):}` at x = 2
f(x) = `{{:((1 - cos 2x)/x^2",", "if" x ≠ 0),(5",", "if" x = 0):}` at x = 0
f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "if" x ≠ 0),(1/2",", "if" x = 0):}` at x = 0
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",", "if" 0 ≤ x < 2),((x - 1)x",", "if" 2 ≤ x < 3):}` at x = 2
An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.
`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)` is equal to ____________.