हिंदी

If F ( X ) = { a X 2 − B , I F | X | < 1 1 | X | , I F | X | ≥ 1 is Differentiable at X = 1, Find A, B. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\]  is differentiable at x = 1, find a, b.

संक्षेप में उत्तर

उत्तर

Given:  

If \[f\left( x \right) = \begin{cases}a x^2 +b, & \left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \left| x \right| \geq 1\end{cases}\] 
 
If \[f\left( x \right) = \begin{cases}-\frac{1}{x}, & x  < -1 \\ a x^2 +b , & -1  < x <  1 \\ \frac{1}{ x } , &  x  \geq 1\end{cases}\] 

It is given that the given function is differentiable at x = 1.
We know every differentiable function is continuous. Therefore it is continuous at x =1. Then,

\[\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) \]
\[ \Rightarrow \lim_{x \to 1} a x^2 - b = \lim_{x \to 1} \frac{1}{x}\]
\[ \Rightarrow a - b = 1 . . . (i)\]

It is also differentiable at x=1. Therefore,

 (LHD at x = 1) = (RHD at x = 1)

\[\Rightarrow \lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1}\]
\[ \Rightarrow \lim_{x \to 1} \frac{a x^2 - b - 1}{x - 1} = \lim_{x \to 1} \frac{\frac{1}{x} - 1}{x - 1} \]
\[ \Rightarrow \lim_{x \to 1} \frac{a x^2 + 1 - a - 1}{x - 1} = \lim_{x \to 1} \frac{- (x - 1)}{x - 1} \left[ \text { Using }(i) \right]\]
\[ \Rightarrow \lim_{x \to 1} a (x + 1) = \lim_{x \to 1} - 1 \]
\[ \Rightarrow 2a = - 1 \]
\[ \Rightarrow a = - \frac{1}{2}\]

From (i), we have:

\[a - b = 1\]
\[ \Rightarrow - \frac{1}{2} - b = 1\]
\[ \Rightarrow b = - \frac{3}{2}\]

Hence, when 

\[a = - \frac{1}{2}\] and 
\[b = - \frac{3}{2}\]

 the function is differentiable at x = 1. 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Differentiability - Exercise 10.1 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 10 Differentiability
Exercise 10.1 | Q 10 | पृष्ठ ११

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Examine the following function for continuity:

f(x) = | x – 5|


Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.

 


Discuss the continuity of the following functions at the indicated point(s): 

(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \binom{\left| x - a \right|\sin\left( \frac{1}{x - a} \right), for x \neq a}{0, for x = a}at x = a\] 

Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\] 


Determine the value of the constant k so that the function 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\] 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1

 


Discuss the continuity of the f(x) at the indicated points: 

(i) f(x) = | x | + | x − 1 | at x = 0, 1.


For what value of k is the following function continuous at x = 2? 

\[f\left( x \right) = \begin{cases}2x + 1 ; & \text{ if } x < 2 \\ k ; & x = 2 \\ 3x - 1 ; & x > 2\end{cases}\]

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if }   x \neq 0 \\ 4 , & \text{ if }  x = 0\end{cases}\]

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{x^4 + x^3 + 2 x^2}{\tan^{- 1} x}, & \text{ if } x \neq 0 \\ 10 , & \text{ if }  x = 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}5 , & \text{ if }  & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if }  & x \geq 10\end{cases}\]


Discuss the continuity of the function  \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if }  x < 2 \\ \frac{3x}{2} , & \text{ if  } x \geq 2\end{cases}\]


Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.


Define continuity of a function at a point.

 

If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if }  x \neq 4 \\ k , & \text{ if }  x = 4\end{cases}\]  is continuous at x = 4, find k.


If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


Let f (x) = | x | + | x − 1|, then


If  \[f\left( x \right) = \begin{cases}\frac{1 - \sin^2 x}{3 \cos^2 x} , & x < \frac{\pi}{2} \\ a , & x = \frac{\pi}{2} \\ \frac{b\left( 1 - \sin x \right)}{\left( \pi - 2x \right)^2}, & x > \frac{\pi}{2}\end{cases}\]. Then, f (x) is continuous at  \[x = \frac{\pi}{2}\], if

 


Is every continuous function differentiable?


The set of points where the function f (x) = x |x| is differentiable is 

 


The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is


Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`


If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0


Discuss the continuity of the function f(x) = sin x . cos x.


If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.


Show that the function f defined by f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


A continuous function can have some points where limit does not exist.


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = `{{:((1 - cos 2x)/x^2",", "if"  x ≠ 0),(5",", "if"  x = 0):}` at x = 0


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "if"  x ≠ 2),("k"",",  "if"  x = 2):}` at x = 2


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",",  "if"  0 ≤ x < 2),((x - 1)x",",  "if"  2 ≤ x < 3):}` at x = 2


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×