Advertisements
Advertisements
प्रश्न
If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0
उत्तर
f is continuous at x = 0
∴ `lim_(x -> 0) f(x) = f(0)`
∴ `lim_(x -> 0) [5^x + 5^-x - 2]/x^2 = f(0)`
∴ `f(0) = lim_(x -> 0) [5^x + 1/5^x - 2]/x^2`
= `lim_( x -> 0) [(5^x)^2 + 1 - 2(5^x)]/x^2 xx 1/5^x`
= `lim_( x -> 0) (5^x - 1)^2/[x^2] xx 1/5^x`
= `lim_( x -> 0) ((5^x - 1)/x)^2 xx lim_( x -> 0)(1/5^x)`
= (log5)2 x `1/5^0`
= (log5)2 x 1
∴ f(0) = (log5)2
APPEARS IN
संबंधित प्रश्न
Determine the value of 'k' for which the following function is continuous at x = 3
`f(x) = {(((x + 3)^2 - 36)/(x - 3), x != 3), (k, x = 3):}`
Show that
is discontinuous at x = 0.
Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when} & x \neq 0 \\ k ,\text{ when } & x = 0\end{cases}\] is continuous at x = 0;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
Discuss the continuity of the f(x) at the indicated points:
(i) f(x) = | x | + | x − 1 | at x = 0, 1.
Prove that \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 + x^3 + 2 x^2}{\tan^{- 1} x}, & \text{ if } x \neq 0 \\ 10 , & \text{ if } x = 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if } x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if } x < 1\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
If \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is
The values of the constants a, b and c for which the function \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are
Discuss the continuity and differentiability of f (x) = e|x| .
Give an example of a function which is continuos but not differentiable at at a point.
If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]
If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`
If the function
f(x) = x2 + ax + b, x < 2
= 3x + 2, 2≤ x ≤ 4
= 2ax + 5b, 4 < x
is continuous at x = 2 and x = 4, then find the values of a and b
Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`
The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.
f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.