हिंदी

In the Following, Determine the Value(S) of Constant(S) Involved in the Definition So that the Given Function is Continuous: F ( X ) = { √ 1 + P X − √ 1 − P X X , I F − 1 ≤ X < 0 2 X + 1 X − 2 , - Mathematics

Advertisements
Advertisements

प्रश्न

In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if }  0 \leq x \leq 1\end{cases}\]

योग

उत्तर

Given: 

 \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if }  0 \leq x \leq 1\end{cases}\]
If  \[f\left( x \right)\] is continuous at x = 0, then 
\[\lim_{x \to 0^-} f\left( x \right) = \lim_{x \to 0^+} f\left( x \right)\]
\[\Rightarrow \lim_{h \to 0} f\left( - h \right) = \lim_{h \to 0} f\left( h \right) \]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\sqrt{1 - ph} - \sqrt{1 + ph}}{- h} \right) = \lim_{h \to 0} \left( \frac{2h + 1}{h - 2} \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( \sqrt{1 - ph} - \sqrt{1 + ph} \right)\left( \sqrt{1 - ph} + \sqrt{1 + ph} \right)}{- h\left( \sqrt{1 - ph} + \sqrt{1 + ph} \right)} \right) = \lim_{h \to 0} \left( \frac{2h + 1}{h - 2} \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( 1 - ph - 1 - ph \right)}{- h\left( \sqrt{1 - ph} + \sqrt{1 + ph} \right)} \right) = \lim_{h \to 0} \left( \frac{2h + 1}{h - 2} \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( - 2ph \right)}{- h\left( \sqrt{1 - ph} + \sqrt{1 + ph} \right)} \right) = \lim_{h \to 0} \left( \frac{2h + 1}{h - 2} \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( 2p \right)}{\left( \sqrt{1 - ph} + \sqrt{1 + ph} \right)} \right) = \lim_{h \to 0} \left( \frac{2h + 1}{h - 2} \right)\]
\[ \Rightarrow \left( \frac{\left( 2p \right)}{\left( 2 \right)} \right) = \left( \frac{1}{- 2} \right)\]
\[ \Rightarrow p = \frac{- 1}{2}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.2 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.2 | Q 4.6 | पृष्ठ ३५

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.

 


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{1 - x^n}{1 - x}, & x \neq 1 \\ n - 1 , & x = 1\end{array}n \in N \right.at x = 1\]

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - 1 \right|}{x - 1}, for & x \neq 1 \\ 2 , for & x = 1\end{cases}at x = 1\]

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{2\left| x \right| + x^2}{x}, & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \binom{\left| x - a \right|\sin\left( \frac{1}{x - a} \right), for x \neq a}{0, for x = a}at x = a\] 

Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.


If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if }  & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\]  is continuous at x = 4, find ab.

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5


Define continuity of a function at a point.

 

If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if }  x \neq 4 \\ k , & \text{ if }  x = 4\end{cases}\]  is continuous at x = 4, find k.


Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\]  is continuous at x = 1.

 


The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]    continuous at x = 0, is

 


If  \[f\left( x \right) = \begin{cases}\frac{1 - \sin^2 x}{3 \cos^2 x} , & x < \frac{\pi}{2} \\ a , & x = \frac{\pi}{2} \\ \frac{b\left( 1 - \sin x \right)}{\left( \pi - 2x \right)^2}, & x > \frac{\pi}{2}\end{cases}\]. Then, f (x) is continuous at  \[x = \frac{\pi}{2}\], if

 


If  \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Show that f(x) = x1/3 is not differentiable at x = 0.


Show that the function 

\[f\left( x \right) = \begin{cases}x^m \sin\left( \frac{1}{x} \right) & , x \neq 0 \\ 0 & , x = 0\end{cases}\]

(i) differentiable at x = 0, if m > 1
(ii) continuous but not differentiable at x = 0, if 0 < m < 1
(iii) neither continuous nor differentiable, if m ≤ 0


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.


If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


If \[f\left( x \right) = \left| \log_e |x| \right|\] 


Let f (x) = |sin x|. Then,


Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is 


Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0

                     = k                    for x = 0

is continuous at x = 0. 


If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0


If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`


Discuss the continuity of the function f(x) = sin x . cos x.


The value of k which makes the function defined by f(x) = `{{:(sin  1/x",",  "if"  x ≠ 0),("k"",",  "if"  x = 0):}`, continuous at x = 0 is ______.


The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.


A continuous function can have some points where limit does not exist.


f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "if"  x ≠ 2),("k"",",  "if"  x = 2):}` at x = 2


Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",",  "if"  0 ≤ x < 2),((x - 1)x",",  "if"  2 ≤ x < 3):}` at x = 2


Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×