हिंदी

If F ( X ) = | Log E | X | | - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = \left| \log_e |x| \right|\] 

विकल्प

  • f (x) is continuous and differentiable for all x in its domain

  • f (x) is continuous for all for all × in its domain but not differentiable at x = ± 1

  •  (x) is neither continuous nor differentiable at x = ± 1

  • none of these

     

MCQ
संक्षेप में उत्तर

उत्तर

(b) f (x) is continuous for all x in its domain but not differentiable at x = ± 1 

We have, 
\[f\left( x \right) = \left| \log_e |x| \right|\]
\[\text{We know that log function is defined for positive value} . \]
\[\text{Here,} \left| x \right| \text { is positive for all non zero x} . \]
\[\text{Therefore, domain of function is R} - \left\{ 0 \right\}\]

And we know that logarithmic function is continuous in its domain.

\[\text{Therefore, }\left| \log_e \left| x \right| \right| \text { is continuous in its domain} .\]
\[\text{We will check the differentiability at its critical points} . \]
`|log_e |x||| = {(log_e (-x) , -infty <x < -1),(-log_e (-x) ,-1 <x<0),(-log_e (x) ,0<x<1),(log_e(x) ,1<x< infty):}`

\[\left( \text { LHD at x } = - 1 \right) = \lim_{x \to - 1^-} \frac{f\left( x \right) - f\left( - 1 \right)}{x - \left( - 1 \right)}\]
\[ = \lim_{x \to - 1^-} \frac{\log_e \left( - x \right) - 0}{x + 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left[ - \left( - 1 - h \right) \right]}{- 1 - h + 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left( 1 + h \right)}{- h}\]
\[ = - 1\]
\[\left( \text { RHD at x } = - 1 \right) = \lim_{x \to - 1^+} \frac{f\left( x \right) - f\left( - 1 \right)}{x - \left( - 1 \right)}\]
\[ = \lim_{x \to - 1^+} \frac{- \log_e \left( - x \right) - 0}{x + 1}\]
\[ = \lim_{h \to 0} \frac{- \log_e \left[ - \left( - 1 + h \right) \right]}{- 1 + h + 1}\]
\[ = \lim_{h \to 0} \frac{- \log_e \left( 1 - h \right)}{h}\]
\[ = {- \lim}_{h \to 0} \frac{\log_e \left( 1 - h \right)}{h}\]
\[ = - 1 \times - 1 = 1\]
\[\text { Here, LHD }\neq \text { RHD }\]
\[\text{Therefore, the given function is not differentiable at x} = - 1 .\]
\[\left( \text { LHD at x } = 1 \right) = \lim_{x \to 1^-} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[ = \lim_{x \to 1^-} \frac{- \log_e \left( x \right) - 0}{x - 1}\]
\[ = \lim_{h \to 0} \frac{- \log_e \left[ \left( 1 - h \right) \right]}{1 - h - 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left( 1 - h \right)}{h}\]
\[ = - 1\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{x \to 1^+} \frac{f\left( x \right) - f\left( 1 \right)}{x - \left( 1 \right)}\]
\[ = \lim_{x \to 1^+} \frac{\log_e \left( x \right) - 0}{x - 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left[ \left( 1 + h \right) \right]}{1 + h - 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left( 1 + h \right)}{h}\]
\[ = 1\]
\[\text { Here, LHD } \neq \text { RHD }\]
\[\text{Therefore, the given function is not differentiable at x} = 1 .\]
Therefore, given function is continuous for all x in its domain but not differentiable at x = ± 1
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Differentiability - Exercise 10.4 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 10 Differentiability
Exercise 10.4 | Q 12 | पृष्ठ १८

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


A function f(x) is defined as,

\[f\left( x \right) = \begin{cases}\frac{x^2 - x - 6}{x - 3}; if & x \neq 3 \\ 5 ; if & x = 3\end{cases}\]  Show that f(x) is continuous that x = 3.

A function f(x) is defined as 

\[f\left( x \right) = \begin{cases}\frac{x^2 - 9}{x - 3}; if & x \neq 3 \\ 6 ; if & x = 3\end{cases}\]

Show that f(x) is continuous at x = 3

 

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - 1 \right|}{x - 1}, for & x \neq 1 \\ 2 , for & x = 1\end{cases}at x = 1\]

Show that 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]


If   \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if }  & x = 2\end{cases}\]  is continuous at x = 2, find k.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; 

\[f\left( x \right) = \begin{cases}kx + 1, \text{ if }  & x \leq \pi \\ \cos x, \text{ if }  & x > \pi\end{cases}\] at x = π

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\] 

 


Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if }  x < \frac{\pi}{2} \\ a , & \text{ if }  x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if }  x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.

 

Discuss the continuity of the function  \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if }  x < 2 \\ \frac{3x}{2} , & \text{ if  } x \geq 2\end{cases}\]


Define continuity of a function at a point.

 

\[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & 0 \leq x \leq 1\end{cases}\]is continuous in the interval [−1, 1], then p is equal to

 


The value of b for which the function 

\[f\left( x \right) = \begin{cases}5x - 4 , & 0 < x \leq 1 \\ 4 x^2 + 3bx , & 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 

If  \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (ab) for which f (x) cannot be continuous at x = 1, is

 


The values of the constants ab and c for which the function  \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are

 


The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


If  \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to


Show that f(x) = x1/3 is not differentiable at x = 0.


Discuss the continuity and differentiability of f (x) = e|x| .


Is every differentiable function continuous?


Give an example of a function which is continuos but not differentiable at at a point.


Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]


The set of points where the function f (x) = x |x| is differentiable is 

 


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4 

= 10 for x = 4  at x = 4


Find the value of k for which the function f (x ) =  \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .

 
 

If y = ( sin x )x , Find `dy/dx`


Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`


Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}`


The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at ______.


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


f(x) = `{{:(x^2/2",",  "if"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "if"  1 < x ≤ 2):}` at x = 1


f(x) = |x| + |x − 1| at x = 1


If f is continuous on its domain D, then |f| is also continuous on D.


The composition of two continuous function is a continuous function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×