English

If F ( X ) = | Log E | X | | - Mathematics

Advertisements
Advertisements

Question

If \[f\left( x \right) = \left| \log_e |x| \right|\] 

Options

  • f (x) is continuous and differentiable for all x in its domain

  • f (x) is continuous for all for all × in its domain but not differentiable at x = ± 1

  •  (x) is neither continuous nor differentiable at x = ± 1

  • none of these

     

MCQ
Answer in Brief

Solution

(b) f (x) is continuous for all x in its domain but not differentiable at x = ± 1 

We have, 
\[f\left( x \right) = \left| \log_e |x| \right|\]
\[\text{We know that log function is defined for positive value} . \]
\[\text{Here,} \left| x \right| \text { is positive for all non zero x} . \]
\[\text{Therefore, domain of function is R} - \left\{ 0 \right\}\]

And we know that logarithmic function is continuous in its domain.

\[\text{Therefore, }\left| \log_e \left| x \right| \right| \text { is continuous in its domain} .\]
\[\text{We will check the differentiability at its critical points} . \]
`|log_e |x||| = {(log_e (-x) , -infty <x < -1),(-log_e (-x) ,-1 <x<0),(-log_e (x) ,0<x<1),(log_e(x) ,1<x< infty):}`

\[\left( \text { LHD at x } = - 1 \right) = \lim_{x \to - 1^-} \frac{f\left( x \right) - f\left( - 1 \right)}{x - \left( - 1 \right)}\]
\[ = \lim_{x \to - 1^-} \frac{\log_e \left( - x \right) - 0}{x + 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left[ - \left( - 1 - h \right) \right]}{- 1 - h + 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left( 1 + h \right)}{- h}\]
\[ = - 1\]
\[\left( \text { RHD at x } = - 1 \right) = \lim_{x \to - 1^+} \frac{f\left( x \right) - f\left( - 1 \right)}{x - \left( - 1 \right)}\]
\[ = \lim_{x \to - 1^+} \frac{- \log_e \left( - x \right) - 0}{x + 1}\]
\[ = \lim_{h \to 0} \frac{- \log_e \left[ - \left( - 1 + h \right) \right]}{- 1 + h + 1}\]
\[ = \lim_{h \to 0} \frac{- \log_e \left( 1 - h \right)}{h}\]
\[ = {- \lim}_{h \to 0} \frac{\log_e \left( 1 - h \right)}{h}\]
\[ = - 1 \times - 1 = 1\]
\[\text { Here, LHD }\neq \text { RHD }\]
\[\text{Therefore, the given function is not differentiable at x} = - 1 .\]
\[\left( \text { LHD at x } = 1 \right) = \lim_{x \to 1^-} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[ = \lim_{x \to 1^-} \frac{- \log_e \left( x \right) - 0}{x - 1}\]
\[ = \lim_{h \to 0} \frac{- \log_e \left[ \left( 1 - h \right) \right]}{1 - h - 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left( 1 - h \right)}{h}\]
\[ = - 1\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{x \to 1^+} \frac{f\left( x \right) - f\left( 1 \right)}{x - \left( 1 \right)}\]
\[ = \lim_{x \to 1^+} \frac{\log_e \left( x \right) - 0}{x - 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left[ \left( 1 + h \right) \right]}{1 + h - 1}\]
\[ = \lim_{h \to 0} \frac{\log_e \left( 1 + h \right)}{h}\]
\[ = 1\]
\[\text { Here, LHD } \neq \text { RHD }\]
\[\text{Therefore, the given function is not differentiable at x} = 1 .\]
Therefore, given function is continuous for all x in its domain but not differentiable at x = ± 1
shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Differentiability - Exercise 10.4 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 10 Differentiability
Exercise 10.4 | Q 12 | Page 18

RELATED QUESTIONS

Discuss the continuity of the function f, where f is defined by `f(x) = {(3, ","if 0 <= x <= 1),(4, ","if 1 < x < 3),(5, ","if 3 <= x <= 10):}`


Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`


Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Discuss the continuity of the following functions at the indicated point(s): 

(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}(x - a)\sin\left( \frac{1}{x - a} \right), & x \neq a \\ 0 , & x = a\end{array}at x = a \right.\]

 


Show that 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]


Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]


For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]


If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if }  & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\]  is continuous at x = 4, find ab.

 


If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\] 

 


Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?

 


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if }  x \neq 4 \\ k , & \text{ if }  x = 4\end{cases}\]  is continuous at x = 4, find k.


If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1


If  \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then 


If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 


\[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & 0 \leq x \leq 1\end{cases}\]is continuous in the interval [−1, 1], then p is equal to

 


The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

Define differentiability of a function at a point.

 

Is every continuous function differentiable?


If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is


If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0


If the function f is continuous at x = 0

Where f(x) = 2`sqrt(x^3 + 1)` + a,  for x < 0,
= `x^3 + a + b,  for x > 0
and f (1) = 2, then find a and b.


If f(x) = `(e^(2x) - 1)/(ax)` .                for x < 0 , a ≠ 0
         = 1.                             for x = 0
         = `(log(1 + 7x))/(bx)`.        for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b


Examine the continuity off at x = 1, if

f (x) = 5x - 3 , for 0 ≤ x ≤ 1

       = x2 + 1 , for 1 ≤ x ≤ 2


Examine the continuity of the followin function : 

  `{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`   


Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`


If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)`  so that f (x) becomes continuous at x = `pi/4`


The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.


A continuous function can have some points where limit does not exist.


Prove that the function f defined by 
f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.


Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin  1/x",",  "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×