Advertisements
Advertisements
Question
Prove that the function f defined by
f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.
Solution
we have f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}`
At x = 0
L.H.L. = `lim_(x ->0^+) ((0 - "h"))/(|0 - "h"| + 2(0 - "h")^2`
= `lim_("h" -> 0) (-"h")/("h" + 2"h"^2)`
= `lim_("h" -> 0) (-1)/(1 + 2"h")`
= – 1
R.H.L. = `lim_(x -> 0^+) x/(|x| + 2x^2)`
= `lim_("h" -> 0) (0 + "h")/(|0 + "h"| + 2(0 + "h")^2`
= `lim_("h" -> 0) "h"/("h" + 2"h"^2)`
= `lim_("h" -> 0) 1/(1 + 2"h")`
= 1
Since, L.H.L. ≠ R.H.L. for any value of k.
Hence, f(x) is discontinuous at x = 0 regardless the choice of k.
APPEARS IN
RELATED QUESTIONS
If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`
is continuous at x = 0, then find the values of a and b.
Examine the following function for continuity:
f (x) = x – 5
Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
Show that
\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]
Find the value of 'a' for which the function f defined by
Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for" x < 0),(x, "for" x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for" x > 0):}` is continuous at x = 0.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.
If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is
Is every differentiable function continuous?
If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]
Let f (x) = |sin x|. Then,
The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is
If f is continuous at x = 0, then find f (0).
Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`
Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`
Find the value of 'k' if the function
f(x) = `(tan 7x)/(2x)`, for x ≠ 0.
= k for x = 0.
is continuous at x = 0.
If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`
f(x) = |x| + |x − 1| at x = 1
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",", "if" 0 ≤ x < 2),((x - 1)x",", "if" 2 ≤ x < 3):}` at x = 2
The composition of two continuous function is a continuous function.
`lim_("x" -> 0) (2 "sin x - sin" 2 "x")/"x"^3` is equal to ____________.
Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?