English

Determine the values of a, b, c for which the function f(x) = forfor/for{sin(a+1)x+sinxxfor x<0xfor x=0x+bx2-xbx3/2for x>0 is continuous at x = 0. - Mathematics

Advertisements
Advertisements

Question

Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.

Sum

Solution

Given:

f(x) is continuous at x = 0

For f(x) to be continuous at x = 0, f(0)- = f(0)+ = f(0)

LHL = f(0)- = `lim_(x->0) (sin (a + 1)x + sinx)/x`

`=> lim_(h->0)(sin (a + h)h + sinh)/h`

`=> lim_(h->0)(sin (a + 1)h)/h + lim_(h->0)sinh/h`

`=> lim_(h->0)(sin(a + 1)h)/h xx ((a + 1))/((a + 1)) + lim_(h->0)sinh/h`

`=> lim_(h->0)(sin (a + 1)h)/((a + 1)) xx ((a + 1))/1 + lim_(h->0)sinh/h`

`lim_(h->0)(sin(a + 1)h)/((a + 1)h) = 1`

`lim_(h->0)sinh/h = 1`

⇒ 1 × (a + 1) + 1

⇒ (a + 1) + 1

f(0)- ⇒ a + 2       ...(1)

RHL = f(0+) = `lim_(x->0)(sqrt(x + bx^2) - sqrtx)/(bx^(3/2))`

`=> lim_(x->0)(sqrt(x + bx^2)- sqrtx)/(bx^(3/2))`

`=> lim_(h->0)(sqrt(h + bh^2) - sqrth)/(bh^(3/2))`

`=> lim_(h->0)(sqrt(h + bh^2) - sqrth)/(b xx h xx h^(1/2))`

`=> lim_(h->0) (sqrt(h + bh^2)-sqrth)/(b xx h xx sqrth)`

`=> lim_(h ->0)(sqrt(h(1 + bh))- sqrth)/(b xx h xx sqrth)`

`=> lim_(h ->0)(sqrth(sqrt(1 + bh))- sqrt1)/(bh xx sqrth)`

`=> lim_(h->0)((sqrt(1 + bh))- sqrt1)/(bh)`

Take the complex conjugate of 

`(sqrt(1 + bh)- sqrt 1)`,

i.e, `(sqrt(1 + bh)- sqrt 1)` and multiply it with numerator and denominator

`=> lim_(h->0)((sqrt(1 + bh))- sqrt1)/(bh) xx ((sqrt(1 + bh)) + sqrt1)/((sqrt(1 + bh)) + sqrt1)`

`lim_(h->0) ((sqrt(1 + bh))^2 - (sqrt1)^2)/(bh)`

∴ (a + b)(a − b) = a2 − b2

`=> lim_(h->0)((1 + bh - 1))/(bh(sqrt(1 + bh))+ sqrt1)`

`=> lim_(h->0)((bh))/((sqrt(1 + bh)) sqrt1)`

`=> 1/((sqrt(1 + b xx 0)) + sqrt1)`

`=> 1/(1 + 1)`

f(0)+ = `1/2`   ...(2)

since, f(x) is continuous at x = 0, From (1) & (2), we get,

⇒ a + 2 = `1/2`

⇒ a = `1/2 - 2`

⇒ a = `(-3)/2`

Also, 

f(0)- = f(0)+ = f(0)

⇒ f(0) = c

⇒ c = a + 2 = `1/2`

⇒ c = `1/2`

So the values of a = `(-3)/2,` c = `1/2` and b = R-{0}(any real number except 0)

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.1 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.1 | Q 26 | Page 19

RELATED QUESTIONS

Examine the continuity of the following function :

`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`


Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`


Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - 1 \right|}{x - 1}, for & x \neq 1 \\ 2 , for & x = 1\end{cases}at x = 1\]

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{2\left| x \right| + x^2}{x}, & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \binom{\left| x - a \right|\sin\left( \frac{1}{x - a} \right), for x \neq a}{0, for x = a}at x = a\] 

Show that 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]


For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


Discuss the continuity of the f(x) at the indicated points:  f(x) = | x − 1 | + | x + 1 | at x = −1, 1.

 

The function  \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]

 


If  \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is


The values of the constants ab and c for which the function  \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are

 


Find whether the function is differentiable at x = 1 and x = 2 

\[f\left( x \right) = \begin{cases}x & x \leq 1 \\ \begin{array} 22 - x  \\ - 2 + 3x - x^2\end{array} & \begin{array}11 \leq x \leq 2 \\ x > 2\end{array}\end{cases}\]

Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.


Discuss the continuity and differentiability of f (x) = e|x| .


Give an example of a function which is continuos but not differentiable at at a point.


Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]


The set of points where the function f (x) = x |x| is differentiable is 

 


If \[f\left( x \right) = \left| \log_e |x| \right|\] 


If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\]  then f (x) is 


Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0

                     = k                    for x = 0

is continuous at x = 0. 


Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4 

= 10 for x = 4  at x = 4


Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3`   for x = 1


If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0


If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.


Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`


If f(x) = `(e^(2x) - 1)/(ax)` .                for x < 0 , a ≠ 0
         = 1.                             for x = 0
         = `(log(1 + 7x))/(bx)`.        for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b


Examine the continuity off at x = 1, if

f (x) = 5x - 3 , for 0 ≤ x ≤ 1

       = x2 + 1 , for 1 ≤ x ≤ 2


Examine the continuity of the following function :

`{:(,f(x),=(x^2-16)/(x-4),",","for "x!=4),(,,=8,",","for "x=4):}} " at " x=4`


If the function f is continuous at x = 0 then find f(0),
where f(x) =  `[ cos 3x - cos x ]/x^2`, `x!=0`


The function given by f (x) = tanx is discontinuous on the set ______.


The value of k which makes the function defined by f(x) = `{{:(sin  1/x",",  "if"  x ≠ 0),("k"",",  "if"  x = 0):}`, continuous at x = 0 is ______.


A continuous function can have some points where limit does not exist.


f(x) = `{{:((1 - cos 2x)/x^2",", "if"  x ≠ 0),(5",", "if"  x = 0):}` at x = 0


f(x) = `{{:(|x|cos  1/x",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0 


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×