Advertisements
Advertisements
प्रश्न
Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for" x < 0),(x, "for" x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for" x > 0):}` is continuous at x = 0.
उत्तर
Given:
f(x) is continuous at x = 0
For f(x) to be continuous at x = 0, f(0)- = f(0)+ = f(0)
LHL = f(0)- = `lim_(x->0) (sin (a + 1)x + sinx)/x`
`=> lim_(h->0)(sin (a + h)h + sinh)/h`
`=> lim_(h->0)(sin (a + 1)h)/h + lim_(h->0)sinh/h`
`=> lim_(h->0)(sin(a + 1)h)/h xx ((a + 1))/((a + 1)) + lim_(h->0)sinh/h`
`=> lim_(h->0)(sin (a + 1)h)/((a + 1)) xx ((a + 1))/1 + lim_(h->0)sinh/h`
`lim_(h->0)(sin(a + 1)h)/((a + 1)h) = 1`
`lim_(h->0)sinh/h = 1`
⇒ 1 × (a + 1) + 1
⇒ (a + 1) + 1
f(0)- ⇒ a + 2 ...(1)
RHL = f(0+) = `lim_(x->0)(sqrt(x + bx^2) - sqrtx)/(bx^(3/2))`
`=> lim_(x->0)(sqrt(x + bx^2)- sqrtx)/(bx^(3/2))`
`=> lim_(h->0)(sqrt(h + bh^2) - sqrth)/(bh^(3/2))`
`=> lim_(h->0)(sqrt(h + bh^2) - sqrth)/(b xx h xx h^(1/2))`
`=> lim_(h->0) (sqrt(h + bh^2)-sqrth)/(b xx h xx sqrth)`
`=> lim_(h ->0)(sqrt(h(1 + bh))- sqrth)/(b xx h xx sqrth)`
`=> lim_(h ->0)(sqrth(sqrt(1 + bh))- sqrt1)/(bh xx sqrth)`
`=> lim_(h->0)((sqrt(1 + bh))- sqrt1)/(bh)`
Take the complex conjugate of
`(sqrt(1 + bh)- sqrt 1)`,
i.e, `(sqrt(1 + bh)- sqrt 1)` and multiply it with numerator and denominator
`=> lim_(h->0)((sqrt(1 + bh))- sqrt1)/(bh) xx ((sqrt(1 + bh)) + sqrt1)/((sqrt(1 + bh)) + sqrt1)`
`lim_(h->0) ((sqrt(1 + bh))^2 - (sqrt1)^2)/(bh)`
∴ (a + b)(a − b) = a2 − b2
`=> lim_(h->0)((1 + bh - 1))/(bh(sqrt(1 + bh))+ sqrt1)`
`=> lim_(h->0)((bh))/((sqrt(1 + bh)) sqrt1)`
`=> 1/((sqrt(1 + b xx 0)) + sqrt1)`
`=> 1/(1 + 1)`
f(0)+ = `1/2` ...(2)
since, f(x) is continuous at x = 0, From (1) & (2), we get,
⇒ a + 2 = `1/2`
⇒ a = `1/2 - 2`
⇒ a = `(-3)/2`
Also,
f(0)- = f(0)+ = f(0)
⇒ f(0) = c
⇒ c = a + 2 = `1/2`
⇒ c = `1/2`
So the values of a = `(-3)/2,` c = `1/2` and b = R-{0}(any real number except 0)
APPEARS IN
संबंधित प्रश्न
Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`
Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.
Show that
\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]
Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\]
If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if } & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\] is continuous at x = 4, find a, b.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\]
For what value of k is the following function continuous at x = 2?
Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if } x < \frac{\pi}{2} \\ a , & \text{ if } x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if } x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
The function \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]
Let f (x) = | x | + | x − 1|, then
The value of b for which the function
The points of discontinuity of the function
\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\]
Find whether the function is differentiable at x = 1 and x = 2
Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.
If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text { is }\]
The function f (x) = |cos x| is
If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\] then f (x) is
Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is
Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0
= k for x = 0
is continuous at x = 0.
`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?
Discuss the continuity of the function f at x = 0
If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0
= 1, for x = 0
Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`
If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.
If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)` so that f (x) becomes continuous at x = `pi/4`
Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if" x ≠ 0),(0",", "if" x = 0):}` is discontinuous at x = 0.
Let f(x) = `{{:((1 - cos 4x)/x^2",", "if" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if" x > 0):}`. For what value of a, f is continuous at x = 0?
The value of k which makes the function defined by f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}`, continuous at x = 0 is ______.
The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.
f(x) = `{{:((1 - cos 2x)/x^2",", "if" x ≠ 0),(5",", "if" x = 0):}` at x = 0
f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if" x ≠ 2),(5",", "if" x = 2):}` at x = 2
f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = `{{:(x^2/2",", "if" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "if" 1 < x ≤ 2):}` at x = 1
Prove that the function f defined by
f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.
Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.
The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.
If the following function is continuous at x = 2 then the value of k will be ______.
f(x) = `{{:(2x + 1",", if x < 2),( k",", if x = 2),(3x - 1",", if x > 2):}`