मराठी

The Points of Discontinuity of the Function F ( X ) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 2 √ X , 0 ≤ X ≤ 1 4 − 2 X , 1 < X < 5 2 2 X − 7 , 5 2 ≤ X ≤ 4 I S ( a R E ) (A) X = 1, - Mathematics

Advertisements
Advertisements

प्रश्न

The points of discontinuity of the function 

\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\] 

पर्याय

  • x = 1 \[x = \frac{5}{2}\] 

  • \[x = \frac{5}{2}\] 

  • \[x = 1, \frac{5}{2}, 4\]

  •  x = 0, 4

MCQ

उत्तर

\[ x = \frac{5}{2}\]

 If  \[0 \leq x \leq 1\], then   \[f\left( x \right) = 2\sqrt{x}\] .

Since 

\[f\left( x \right) = 2\sqrt{x}\]  is a polynomial function, it is continuous. 
Thus,  
\[f\left( x \right)\]  is continuous for every  \[0 \leq x \leq 1\] .
If  \[1 < x < \frac{5}{2}\]  , then  
\[f\left( x \right) = 4 - 2x\] . Since 
\[2x\] is a polynomial function and 4 is a constant function, both of them are continuous. So, their difference will also be continuous.
Thus,
\[f\left( x \right)\]  is continuous for every 
\[1 < x < \frac{5}{2}\] .
If  \[\frac{5}{2} \leq x \leq 4\] , then  
\[f\left( x \right) = 2x - 7\] Since  
\[2x\] is a polynomial function and 7 is continuous function, their difference will also be continuous.
Thus,
\[f\left( x \right)\] is continuous for every 
\[\frac{5}{2} \leq x \leq 4\] .
Now,
Consider the point  
\[x = 1\] Here,
\[\lim_{x \to 1^-} f\left( x \right) = \lim_{h \to 0} f\left( 1 - h \right) = \lim_{h \to 0} \left( 2\left( \sqrt{1 - h} \right) \right) = 2\]
\[\lim_{x \to 1^+} f\left( x \right) = \lim_{h \to 0} f\left( 1 + h \right) = \lim_{h \to 0} \left( 4 - 2\left( 1 + h \right) \right) = 2\] 
Also,  
\[f\left( 1 \right) = 2\sqrt{1} = 2\] 
\[\Rightarrow \lim_{x \to 1^-} f\left( x \right) = \lim_{x \to 1^+} f\left( x \right) = f\left( 1 \right)\]
Thus
\[f\left( x \right) \text{is continuous at x} = 1\], 
Now,
Consider the point  \[x = \frac{5}{2}\] Here ,
\[\lim_{x \to \frac{5}{2}^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{5}{2} - h \right) = \lim_{h \to 0} \left( 4 - 2\left( \frac{5}{2} - h \right) \right) = - 1\]
\[\lim_{x \to \frac{5}{2}^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{5}{2} + h \right) = \lim_{h \to 0} \left( 2\left( \frac{5}{2} - h \right) - 7 \right) = - 2\]
\[\Rightarrow \lim_{x \to \frac{5}{2}^+} f\left( x \right) \neq \lim_{x \to \frac{5}{2}^-} f\left( x \right)\]
Thus, 
\[f\left( x \right) \text{is discontinuous at x} = \frac{5}{2}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.4 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.4 | Q 38 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

 If 'f' is continuous at x = 0, then find f(0).

`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`


If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.


Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - 1 \right|}{x - 1}, for & x \neq 1 \\ 2 , for & x = 1\end{cases}at x = 1\]

Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when}  & x \neq 0 \\ k ,\text{ when }  & x = 0\end{cases}\] is continuous at x = 0;

 


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if }  0 \leq x \leq 1\end{cases}\]


Prove that
\[f\left( x \right) = \begin{cases}\frac{\sin x}{x} , & x < 0 \\ x + 1 , & x \geq 0\end{cases}\] is everywhere continuous.

 


Find all point of discontinuity of the function 

\[f\left( t \right) = \frac{1}{t^2 + t - 2}, \text{ where }  t = \frac{1}{x - 1}\]

Find f (0), so that  \[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\]  becomes continuous at x = 0.

 


Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\]  is continuous at x = 1.

 


If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1


The value of f (0) so that the function 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^{1/8}}{\left( 5x + 32 \right)^{1/5} - 2},\]  0 is continuous everywhere, is given by


If  \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals


If f is defined by f (x) = x2, find f'(2).


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

The function f (x) = sin−1 (cos x) is


If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]


If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\]  then f (x) is 


Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .


Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4 

= 10 for x = 4  at x = 4


Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]`           For x ≠ 1
                    = `-1/3`                                                 For x = 1


If f is continuous at x = 0, then find f (0). 

Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`


If the function f is continuous at x = 0

Where f(x) = 2`sqrt(x^3 + 1)` + a,  for x < 0,
= `x^3 + a + b,  for x > 0
and f (1) = 2, then find a and b.


If f(x) = `(e^(2x) - 1)/(ax)` .                for x < 0 , a ≠ 0
         = 1.                             for x = 0
         = `(log(1 + 7x))/(bx)`.        for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b


Examine the continuity off at x = 1, if

f (x) = 5x - 3 , for 0 ≤ x ≤ 1

       = x2 + 1 , for 1 ≤ x ≤ 2


 If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`,  x ≠ 0 is continuous at x = 0 , then find f(0).


Examine the continuity of the following function :
f(x) = x2 - x + 9,          for x ≤ 3
      = 4x + 3,               for x > 3 
at x = 3.


Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at ______.


f(x) = |x| + |x − 1| at x = 1


f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "if"  0 ≤ x ≤ 1):}` at x = 0


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).


The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.


The value of k (k < 0) for which the function f defined as

f(x) = `{((1-cos"kx")/("x"sin"x")","  "x" ≠ 0),(1/2","  "x" = 0):}`

is continuous at x = 0 is:


Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×