मराठी

Find Whether the Following Function is Differentiable at X = 1 and X = 2 Or Not : F ( X ) = ⎧ ⎨ ⎩ X , X < 1 2 − X , 1 ≤ X ≤ 2 − 2 + 3 X − X 2 , X > 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .

उत्तर

We have \[f\left( x \right) = \begin{cases}x, & x < 1 \\ 2 - x, & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & x > 2\end{cases}\]

Clearly, f(x), being a polynomial function, is continuous and differentiable for all x < 1, 1 < x < 2 and also for all x > 2.

Thus, the possible points of non-differentiability of f(x) are x = 1 and x = 2.

Now,

f(1) = 2 – 1 = 1

and

f(2) = 2 – 2 = 0

At x = 1,

\[\begin{array}{cl}LHD & = & \lim_{x \to 1^-} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1} \\ = & \lim_{x \to 1} \frac{x - 1}{x - 1} \\ = & 1 \\ RHD & = & \lim_{x \to 1^+} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1} \\ = & \lim_{x \to 1} \frac{\left( 2 - x \right) - 1}{x - 1} \\ = & \lim_{x \to 1} \frac{- \left( x - 1 \right)}{x - 1} \\ = & - 1\end{array}\]

∴ LHD ≠ RHD

So, f(x) is not differentiable at x = 1.

At x = 2,

LHD =`lim_(x →2^-) (f(x) - f (2))/(x-2)`

        = `lim_(x →2) (2- x- 0)/(x-2)`

        = `lim_(x →2) (-(x-2))/(x-2)`

         = -1

RHD = `lim_(x →2^+) (f(x) - f (2))/(x-2)`

         = `lim_(x →2) ((-2+3x -x^2)-0)/(x-2)`

          = `lim_(x →2) (-(x^2- 3x +2))/(x-2)`

          = `lim_(x →2) (-(x-1)(x-2))/(x-2)`

           =` lim_(x →2) -(x-1)`

= -1

LHD = RHD

So, f(x) is differentiable at x = 2.

Thus, the given function is differentiable at x = 2, but not at x = 1.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Foreign Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{1 - x^n}{1 - x}, & x \neq 1 \\ n - 1 , & x = 1\end{array}n \in N \right.at x = 1\]

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; 

\[f\left( x \right) = \begin{cases}kx + 1, \text{ if }  & x \leq \pi \\ \cos x, \text{ if }  & x > \pi\end{cases}\] at x = π

Discuss the continuity of the f(x) at the indicated points:  f(x) = | x − 1 | + | x + 1 | at x = −1, 1.

 

For what value of k is the following function continuous at x = 2? 

\[f\left( x \right) = \begin{cases}2x + 1 ; & \text{ if } x < 2 \\ k ; & x = 2 \\ 3x - 1 ; & x > 2\end{cases}\]

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if }  x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if }  x < 1\end{cases}\]


Define continuity of a function at a point.

 

The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]    continuous at x = 0, is

 


Find whether the function is differentiable at x = 1 and x = 2 

\[f\left( x \right) = \begin{cases}x & x \leq 1 \\ \begin{array} 22 - x  \\ - 2 + 3x - x^2\end{array} & \begin{array}11 \leq x \leq 2 \\ x > 2\end{array}\end{cases}\]

Discuss the continuity and differentiability of f (x) = e|x| .


Define differentiability of a function at a point.

 

Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.


Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is 


Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0

                     = k                    for x = 0

is continuous at x = 0. 


Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3`   for x = 1


If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0


The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.


Examine the continuity off at x = 1, if

f (x) = 5x - 3 , for 0 ≤ x ≤ 1

       = x2 + 1 , for 1 ≤ x ≤ 2


Find the value of 'k' if the function 
f(x) = `(tan 7x)/(2x)`,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}`


The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at ______.


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "if"  0 ≤ x ≤ 1):}` at x = 0


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.


If f(x) = `{{:("m"x + 1",",  "if"  x ≤ pi/2),(sin x + "n"",",  "If"  x > pi/2):}`, is continuous at x = `pi/2`, then ______.


If f is continuous on its domain D, then |f| is also continuous on D.


`lim_("x" -> 0) (2  "sin x - sin"  2 "x")/"x"^3` is equal to ____________.


The value of k (k < 0) for which the function f defined as

f(x) = `{((1-cos"kx")/("x"sin"x")","  "x" ≠ 0),(1/2","  "x" = 0):}`

is continuous at x = 0 is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×