Advertisements
Advertisements
प्रश्न
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array} \text{Telephone}\\{\text{House calls }}\\ \text{Letters}\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}"Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
उत्तर
According to the question,
Let A be the matrix showing the cost per contact (in paisa).
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array}\text{Telephone }\\{\text{House calls}} \\\text{ Letters}\end{array}\]
And, B be a matrix showing the number of contacts of each type made in two cities X and Y.
\[\begin{array}\text{Telephone }& {\text{House calls}} &\text{Letters}\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array}\text{City X} \\ City Y\end{array}\]
Now, the total amount spent by the party in the two cities will be shown by BA.
\[BA = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\]
`=[[140000 + 100000 + 750000],[420000 + 200000 + 1500000]]`
` = [[990000 ],[2120000]]`
Hence, the total amount spent by the party in the two cities is
X: ₹9900
Y: ₹21200
One should consider social activities of a party before casting his/her vote.
संबंधित प्रश्न
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
Evaluate the following:
`([[1 3],[-1 -4]]+[[3 -2],[-1 1]])[[1 3 5],[2 4 6]]`
Evaluate the following:
`[[],[1 2 3],[]]` `[[1 0 2],[2 0 1],[0 1 2]]` `[[2],[4],[6]]`
If A = `[[1 0],[0 1]]`,B`[[1 0],[0 -1]]`
and C= `[[0 1],[1 0]]`
, then show that A2 = B2 = C2 = I2.
If A = `[[2 -1],[3 2]]` and B = `[[0 4],[-1 7]]`find 3A2 − 2B + I
Compute the elements a43 and a22 of the matrix:`A=[[0 1 0],[2 0 2],[0 3 2],[4 0 4]]` `[[2 -1],[-3 2],[4 3]] [[0 1 -1 2 -2],[3 -3 4 -4 0]]`
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
If [1 −1 x] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=`= 0, find x.
If
If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3
Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.
Give examples of matrices
A and B such that AB = O but BA ≠ O.
If A and B are square matrices of the same order, explain, why in general
(A + B)2 ≠ A2 + 2AB + B2
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.
There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array}Telephone \\ House calls \\ Letters\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A − B)T = AT − BT
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.
For any square matrix write whether AAT is symmetric or skew-symmetric.
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
If A and B are two matrices such n that AB = B and BA = A , `A^2 + B^2` is equal to
If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to
If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C
If matrix A = [aij]2×2, where aij `{:(= 1 "if i" ≠ "j"),(= 0 "if i" = "j"):}` then A2 is equal to ______.
A square matrix where every element is unity is called an identity matrix.
If A and B are two square matrices of the same order, then AB = BA.
If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total money (in Rupees) collected by the school DPS?
If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.