Advertisements
Advertisements
प्रश्न
If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
उत्तर
\[Given: f\left( x \right) = x^3 + 4 x^2 - x\]
\[f\left( A \right) = A^3 + 4 A^2 - A\]
\[Now, \]
\[ A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 + 2 + 2 & 0 - 3 - 2 & 0 + 0 + 0 \\ 0 - 6 + 0 & 2 + 9 - 0 & 4 - 0 + 0 \\ 0 - 2 + 0 & 1 + 3 - 0 & 2 - 0 + 0\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}4 & - 5 & 0 \\ - 6 & 11 & 4 \\ - 2 & 4 & 2\end{bmatrix}\]
\[\]
\[ A^3 = A^2 A\]
\[ \Rightarrow A^3 = \begin{bmatrix}4 & - 5 & 0 \\ - 6 & 11 & 4 \\ - 2 & 4 & 2\end{bmatrix}\begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}0 - 10 + 0 & 4 + 15 - 0 & 8 - 0 + 0 \\ 0 + 22 + 4 & - 6 - 33 - 4 & - 12 + 0 + 0 \\ 0 + 8 + 2 & - 2 - 12 - 2 & - 4 + 0 + 0\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}- 10 & 19 & 8 \\ 26 & - 43 & - 12 \\ 10 & - 16 & - 4\end{bmatrix}\]
\[\]
\[f\left( A \right) = A^3 + 4 A^2 - A\]
\[ \Rightarrow f\left( A \right) = \begin{bmatrix}- 10 & 19 & 8 \\ 26 & - 43 & - 12 \\ 10 & - 16 & - 4\end{bmatrix} + 4\begin{bmatrix}4 & - 5 & 0 \\ - 6 & 11 & 4 \\ - 2 & 4 & 2\end{bmatrix} - \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
\[ \Rightarrow f\left( A \right) = \begin{bmatrix}- 10 & 19 & 8 \\ 26 & - 43 & - 12 \\ 10 & - 16 & - 4\end{bmatrix} + \begin{bmatrix}16 & - 20 & 0 \\ - 24 & 44 & 16 \\ - 8 & 16 & 8\end{bmatrix} - \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
\[ \Rightarrow f\left( A \right) = \begin{bmatrix}- 10 + 16 - 0 & 19 - 20 - 1 & 8 + 0 - 2 \\ 26 - 24 - 2 & - 43 + 44 + 3 & - 12 + 16 - 0 \\ 10 - 8 - 1 & - 16 + 16 + 1 & - 4 + 8 + 0\end{bmatrix}\]
\[ \Rightarrow f\left( A \right) = \begin{bmatrix}6 & - 2 & 6 \\ 0 & 4 & 4 \\ 1 & 1 & 4\end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O
If A = `[[ cos 2θ sin 2θ],[ -sin 2θ cos 2θ]]`, find A2.
If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A = [[1 -1],[0 2]] B= [[-1 0],[2 1]]`and `C= [[0 1],[1 -1]]`
If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] and C=[[1 5 2],[-1 1 0],[0 -1 1]]` verify that A (B − C) = AB − AC.
\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\] , Show that A2 = A.
If [1 1 x] `[[1 0 2],[0 2 1],[2 1 0]] [[1],[1],[1]]` = 0, find x.
Find the value of x for which the matrix product`[[2 0 7],[0 1 0],[1 -2 1]]` `[[-x 14x 7x],[0 1 0],[x -4x -2x]]`equal an identity matrix.
Solve the matrix equations:
`[1 2 1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`
Solve the matrix equations:
[2x 3] `[[1 2],[-3 0]] , [[x],[8]]=0`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`
Give examples of matrices
A, B and C such that AB = AC but B ≠ C, A ≠ 0.
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
If A and B are square matrices of the same order, explain, why in general
(A + B) (A − B) ≠ A2 − B2
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000
A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A + B)T = AT + BT
If `A= [[3],[5],[2]]` And B=[1 0 4] , Verify that `(AB)^T=B^TA^T`
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.
If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.
Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.
If AB = A and BA = B, where A and B are square matrices, then
If \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\] is such that A2 = I, then
The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is
If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to
If A and B are square matrices of the same order, then (A + B)(A − B) is equal to
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find 2X – 3Y
Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.
Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.
If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.
A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs. 1,800.