Advertisements
Advertisements
प्रश्न
If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
उत्तर
\[Given: f\left( x \right) = x^3 + 4 x^2 - x\]
\[f\left( A \right) = A^3 + 4 A^2 - A\]
\[Now, \]
\[ A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 + 2 + 2 & 0 - 3 - 2 & 0 + 0 + 0 \\ 0 - 6 + 0 & 2 + 9 - 0 & 4 - 0 + 0 \\ 0 - 2 + 0 & 1 + 3 - 0 & 2 - 0 + 0\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}4 & - 5 & 0 \\ - 6 & 11 & 4 \\ - 2 & 4 & 2\end{bmatrix}\]
\[\]
\[ A^3 = A^2 A\]
\[ \Rightarrow A^3 = \begin{bmatrix}4 & - 5 & 0 \\ - 6 & 11 & 4 \\ - 2 & 4 & 2\end{bmatrix}\begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}0 - 10 + 0 & 4 + 15 - 0 & 8 - 0 + 0 \\ 0 + 22 + 4 & - 6 - 33 - 4 & - 12 + 0 + 0 \\ 0 + 8 + 2 & - 2 - 12 - 2 & - 4 + 0 + 0\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}- 10 & 19 & 8 \\ 26 & - 43 & - 12 \\ 10 & - 16 & - 4\end{bmatrix}\]
\[\]
\[f\left( A \right) = A^3 + 4 A^2 - A\]
\[ \Rightarrow f\left( A \right) = \begin{bmatrix}- 10 & 19 & 8 \\ 26 & - 43 & - 12 \\ 10 & - 16 & - 4\end{bmatrix} + 4\begin{bmatrix}4 & - 5 & 0 \\ - 6 & 11 & 4 \\ - 2 & 4 & 2\end{bmatrix} - \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
\[ \Rightarrow f\left( A \right) = \begin{bmatrix}- 10 & 19 & 8 \\ 26 & - 43 & - 12 \\ 10 & - 16 & - 4\end{bmatrix} + \begin{bmatrix}16 & - 20 & 0 \\ - 24 & 44 & 16 \\ - 8 & 16 & 8\end{bmatrix} - \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
\[ \Rightarrow f\left( A \right) = \begin{bmatrix}- 10 + 16 - 0 & 19 - 20 - 1 & 8 + 0 - 2 \\ 26 - 24 - 2 & - 43 + 44 + 3 & - 12 + 16 - 0 \\ 10 - 8 - 1 & - 16 + 16 + 1 & - 4 + 8 + 0\end{bmatrix}\]
\[ \Rightarrow f\left( A \right) = \begin{bmatrix}6 & - 2 & 6 \\ 0 & 4 & 4 \\ 1 & 1 & 4\end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find BA
Compute the indicated product.
`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Compute the products AB and BA whichever exists in each of the following cases:
A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`
If A =
\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =
\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.
Compute the elements a43 and a22 of the matrix:`A=[[0 1 0],[2 0 2],[0 3 2],[4 0 4]]` `[[2 -1],[-3 2],[4 3]] [[0 1 -1 2 -2],[3 -3 4 -4 0]]`
If \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\] , Show that A2 = I3.
If [1 −1 x] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=`= 0, find x.
\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\], then prove that A2 − A + 2I = O.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.
Find the value of x for which the matrix product`[[2 0 7],[0 1 0],[1 -2 1]]` `[[-x 14x 7x],[0 1 0],[x -4x -2x]]`equal an identity matrix.
Solve the matrix equations:
`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`
If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.
Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
\[A = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix}\] ,prove that
\[A^n = \begin{bmatrix}\text{cos n α} + \text{sin n α} & \sqrt{2}\text{sin n α} \\ - \sqrt{2}\text{sin n α} & \text{cos n α} - \text{sin n α} \end{bmatrix}\] for all n ∈ N.
Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.
Give examples of matrices
A, B and C such that AB = AC but B ≠ C, A ≠ 0.
In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as
Cost per contact
`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`
The number of contacts of each type made in two cities X and Y is given in matrix B as
Telephone House call Letter
`B= [[ 1000, 500, 5000],[3000,1000, 10000 ]]`
Find the total amount spent by the group in the two cities X and Y.
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.
If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ?
If \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals
If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix}, B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix}\]and (A + B)2 = A2 + B2, values of a and b are
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix
Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C
Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.
If matrix A = [aij]2×2, where aij `{:(= 1 "if i" ≠ "j"),(= 0 "if i" = "j"):}` then A2 is equal to ______.
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total money (in Rupees) collected by the school DPS?