हिंदी

If a = [ 1 a 0 1 ] Then an (Where N ∈ N) Equals - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals 

 

विकल्प

  •  \[\begin{bmatrix}1 & na \\ 0 & 1\end{bmatrix}\] 

  •  \[\begin{bmatrix}1 & n^2 a \\ 0 & 1\end{bmatrix}\] 

  • \[\begin{bmatrix}1 & na \\ 0 & 0\end{bmatrix}\] 

  •  \[\begin{bmatrix}n & na \\ 0 & n\end{bmatrix}\]

MCQ

उत्तर

  \[\begin{bmatrix}1 & na \\ 0 & 1\end{bmatrix}\] 

\[Here, \] 

\[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\] 

\[ \Rightarrow A^2 = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix} = \begin{bmatrix}1 + 0 & a + a \\ 0 + 0 & 0 + 1\end{bmatrix} = \begin{bmatrix}1 & 2a \\ 0 & 1\end{bmatrix}\] 
\[ A^3 = A^2 \times A = \begin{bmatrix}1 & 2a \\ 0 & 1\end{bmatrix}\begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix} = \begin{bmatrix}1 + 0 & a + 2a \\ 0 + 0 & 0 + 1\end{bmatrix} = \begin{bmatrix}1 & 3a \\ 0 & 1\end{bmatrix} \] 

This pattern is applicable for all natural numbers.

\[\therefore A^n = \begin{bmatrix}1 & na \\ 0 & 1\end{bmatrix}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.7 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.7 | Q 11 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Compute the indicated product.

`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`


Show that AB ≠ BA in each of the following cases:

`A= [[5    -1],[6        7]]`And B =`[[2       1],[3         4]]`


Evaluate the following:

`([[1              3],[-1    -4]]+[[3        -2],[-1         1]])[[1         3           5],[2            4               6]]`


If A =  `[[1    1],[0    1]]`  show that A2 = `[[1       2],[0          1]]` and A3 = `[[1        3],[0       1]]`


If A =

\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =

\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.


If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.


If [1 −1 x] `[[0       1           -1],[2           1             3],[1          1             1]]   [[0],[1],[1]]=`= 0, find x.


Solve the matrix equations:

`[1  2   1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`


If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 

`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0


If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ CA ≠ O.

 

In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as

      Cost per contact

`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`

The number of contacts of each type made in two cities X and Y is given in matrix B as

       Telephone   House call    Letter

`B= [[    1000, 500,      5000],[3000,1000,     10000                ]]` 

Find the total amount spent by the group in the two cities X and Y.

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(AB)T = BT AT

 

Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that   (A + B)T = AT + BT


 For two matrices A and B,   \[A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}, B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\](AB)T = BT AT.

 


 If  \[A = \begin{bmatrix}2 & 1 & 4 \\ 4 & 1 & 5\end{bmatrix}and B = \begin{bmatrix}3 & - 1 \\ 2 & 2 \\ 1 & 3\end{bmatrix}\] . Write the orders of AB and BA.
 

 


 If \[A = \begin{bmatrix}4 & 3 \\ 1 & 2\end{bmatrix} and B = \binom{ - 4}{ 3}\] 

write AB.

 

If  \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.

 


If  \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.

 

 


If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.


Write matrix A satisfying   ` A+[[2      3],[-1   4]] =[[3     6],[- 3     8]]`.


If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB


For a 2 × 2 matrix A = [aij] whose elements are given by 

\[a_{ij} = \frac{i}{j}\] , write the value of a12.
 

Write a 2 × 2 matrix which is both symmetric and skew-symmetric.


Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]

 


Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


The number of possible matrices of order 3 × 3 with each entry 2 or 0 is 


Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.


The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.


If A and B are two square matrices of the same order, then AB = BA.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • How many articles (in total) are sold by three schools?

A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs. 1,800.


If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×