Advertisements
Advertisements
प्रश्न
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (A + B)T = AT + BT
उत्तर
\[Given: A = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1\end{bmatrix} \text{and B }= \begin{bmatrix}1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix}\]
`A^T = [[1 2 1],[-1 1 2 ],[0 3 1]]` and `B^T = [[1 2 0],[2 1 1 ],[3 3 1]]`
\[\left( i \right) \]
\[A + B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1\end{bmatrix} + \begin{bmatrix}1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix} \]
\[ \Rightarrow A + B = \begin{bmatrix}1 + 1 & - 1 + 2 & 0 + 3 \\ 2 + 2 & 1 + 1 & 3 + 3 \\ 1 + 0 & 2 + 1 & 1 + 1\end{bmatrix}\]
\[ \Rightarrow A + B = \begin{bmatrix}2 & 1 & 3 \\ 4 & 2 & 6 \\ 1 & 3 & 2\end{bmatrix}\]
\[ \Rightarrow \left( A + B \right)^T = \begin{bmatrix}2 & 4 & 1 \\ 1 & 2 & 3 \\ 3 & 6 & 2\end{bmatrix} . . . \left( 1 \right)\]
\[Now, \]
\[ A^T + B^T = \begin{bmatrix}1 & 2 & 1 \\ - 1 & 1 & 2 \\ 0 & 3 & 1\end{bmatrix} + \begin{bmatrix}1 & 2 & 0 \\ 2 & 1 & 1 \\ 3 & 3 & 1\end{bmatrix}\] \[ \Rightarrow A^T + B^T = \begin{bmatrix}1 + 1 & 2 + 2 & 1 + 0 \\ - 1 + 2 & 1 + 1 & 2 + 1 \\ 0 + 3 & 3 + 3 & 1 + 1\end{bmatrix}\]
\[ \Rightarrow A^T + B^T = \begin{bmatrix}2 & 4 & 1 \\ 1 & 2 & 3 \\ 3 & 6 & 2\end{bmatrix} . . . \left( 2 \right)\]
\[ \Rightarrow \left( A + B \right)^T = A^T + B^T \left[ \text{From eqs} . \left( 1 \right) and \left( 2 \right) \right]\]
APPEARS IN
संबंधित प्रश्न
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find BA
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Compute the indicated product:
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Show that AB ≠ BA in each of the following cases:
`A= [[5 -1],[6 7]]`And B =`[[2 1],[3 4]]`
Show that AB ≠ BA in each of the following cases
`A=[[-1 1 0],[0 -1 1],[2 3 4]]` and =B `[[1 2 3], [0 1 0],[1 1 0]]`
Compute the products AB and BA whichever exists in each of the following cases:
`A=[[3 2],[-1 0],[-1 1]]` and `B= [[4 5 6],[0 1 2]]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
If [1 −1 x] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=`= 0, find x.
If
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0
If A=then find λ, μ so that A2 = λA + μI
Solve the matrix equations:
`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`
Solve the matrix equations:
[2x 3] `[[1 2],[-3 0]] , [[x],[8]]=0`
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then show that `(A+B)^2=A^2+B^2`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
Give examples of matrices
A and B such that AB = O but BA ≠ O.
There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(2A)T = 2AT
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A − B)T = AT − BT
Given an example of two non-zero 2 × 2 matrices A and B such that AB = O.
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
What is the total number of 2 × 2 matrices with each entry 0 or 1?
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
The matrix \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a
If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.
If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.
If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total amount of money collected by all three schools DPS, CVC, and KVS?