हिंदी

Compute the Indicated Products: `[[A B],[-b A]][[A -b],[B A]]` - Mathematics

Advertisements
Advertisements

प्रश्न

Compute the indicated products:

`[[a    b],[-b      a]][[a     -b],[b         a]]`

योग

उत्तर

`[[a    b],[-b      a]][[a     -b],[b         a]]`

`⇒ [[a xx axx+b+b             axx(-b)+bxxa],[(-b)xxa+axxb            (-b)xx(-b)+axxa]]`

`⇒[[a^2+b^2            -ab^2+ab],[-ab+ab           b^2+a^2]]`

`⇒[[a^2+b^2       0],[0             a^2+b^2]]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.3 | Q 1.1 | पृष्ठ ४१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Compute the indicated product.

`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`


Show that AB ≠ BA in each of the following cases

`A=[[-1          1           0],[0          -1           1],[2                  3                4]]`  and  =B `[[1          2            3], [0          1           0],[1        1          0]]`


Compute the products AB and BA whichever exists in each of the following cases:

`A= [[1      -2],[2              3]]` and  B=`[[1       2        3],[2         3         1]]`


Compute the products AB and BA whichever exists in each of the following cases:

 [ab]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`


If A = `[[1     0],[0        1]]`,B`[[1            0],[0       -1]]`

and C= `[[0      1],[1       0]]` 

, then show that A2 = B2 = C2 = I2.

 

If A = `[[2       -1],[3             2]]`  and B = `[[0         4],[-1          7]]`find 3A2 − 2B + I


Let A =`[[-1            1               -1],[3         -3           3],[5           5             5]]`and B =`[[0                4                  3],[1              -3              -3],[-1               4                 4]]`

, compute A2 − B2.

 

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A=[[2    -1],[1        1],[-1         2]]` `B=[[0     1],[1      1]]` C=`[[1      -1],[0                1]]`


If A=, find k such that A2 = kA − 2I2

 

If A=then find λ, μ so that A2 = λA + μI

 

Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .


Give examples of matrices

A and B such that AB = O but BA ≠ O.


Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?

 

The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (2A)T = 2AT


 For two matrices A and B,   \[A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}, B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\](AB)T = BT AT.

 


If \[A = \begin{bmatrix}1 & - 1 \\ - 1 & 1\end{bmatrix}\], satisfies the matrix equation A2 = kA, write the value of k.
 

If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.

 

 


If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.


For any square matrix write whether AAT is symmetric or skew-symmetric.


If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?


For a 2 × 2 matrix A = [aij] whose elements are given by 

\[a_{ij} = \frac{i}{j}\] , write the value of a12.
 

If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.


Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


If  \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals 


The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


The number of possible matrices of order 3 × 3 with each entry 2 or 0 is 


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find 2X – 3Y


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C


If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.


If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.


If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal


If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×