Advertisements
Advertisements
प्रश्न
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
उत्तर
`[[a b],[-b a]][[a -b],[b a]]`
`⇒ [[a xx axx+b+b axx(-b)+bxxa],[(-b)xxa+axxb (-b)xx(-b)+axxa]]`
`⇒[[a^2+b^2 -ab^2+ab],[-ab+ab b^2+a^2]]`
`⇒[[a^2+b^2 0],[0 a^2+b^2]]`
APPEARS IN
संबंधित प्रश्न
Compute the indicated product.
`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`
Show that AB ≠ BA in each of the following cases
`A=[[-1 1 0],[0 -1 1],[2 3 4]]` and =B `[[1 2 3], [0 1 0],[1 1 0]]`
Compute the products AB and BA whichever exists in each of the following cases:
`A= [[1 -2],[2 3]]` and B=`[[1 2 3],[2 3 1]]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
If A = `[[1 0],[0 1]]`,B`[[1 0],[0 -1]]`
and C= `[[0 1],[1 0]]`
, then show that A2 = B2 = C2 = I2.
If A = `[[2 -1],[3 2]]` and B = `[[0 4],[-1 7]]`find 3A2 − 2B + I
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]`
If A=, find k such that A2 = kA − 2I2
If A=then find λ, μ so that A2 = λA + μI
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .
Give examples of matrices
A and B such that AB = O but BA ≠ O.
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(2A)T = 2AT
If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.
If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.
For any square matrix write whether AAT is symmetric or skew-symmetric.
If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?
For a 2 × 2 matrix A = [aij] whose elements are given by
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
If \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals
The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is
The matrix \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a
The number of possible matrices of order 3 × 3 with each entry 2 or 0 is
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find 2X – 3Y
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C
If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.
If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.
If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal
If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.