हिंदी

If A=`[[3,-2],[4,-2]] ` , Find K Such That A2 = Ka − 2i2 - Mathematics

Advertisements
Advertisements

प्रश्न

If A=, find k such that A2 = kA − 2I2

 
योग

उत्तर

\[Given: A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\]

\[Now, \]

\[ A^2 = AA\]

\[ \Rightarrow A^2 = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\]

\[ \Rightarrow A^2 = \begin{bmatrix}9 - 8 & - 6 + 4 \\ 12 - 8 & - 8 + 4\end{bmatrix}\]

\[ \Rightarrow A^2 = \begin{bmatrix}1 & - 2 \\ 4 & - 4\end{bmatrix}\]

\[\]

\[ A^2 = kA - 2 I_2 \]

\[ \Rightarrow \begin{bmatrix}1 & - 2 \\ 4 & - 4\end{bmatrix} = k\begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} - 2\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]

\[ \Rightarrow \begin{bmatrix}1 & - 2 \\ 4 & - 4\end{bmatrix} = \begin{bmatrix}3k & - 2k \\ 4k & - 2k\end{bmatrix} - \begin{bmatrix}2 & 0 \\ 0 & 2\end{bmatrix}\]

\[ \Rightarrow \begin{bmatrix}1 & - 2 \\ 4 & - 4\end{bmatrix} = \begin{bmatrix}3k - 2 & - 2k - 0 \\ 4k - 0 & - 2k - 2\end{bmatrix}\]

\[\]

The corresponding elements of two equal matrices are equal . 

\[ \therefore 1 = 3k - 2 \]

\[ \Rightarrow 1 + 2 = 3k \]

\[ \Rightarrow 3 = 3k \]

\[ \Rightarrow k = 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.3 | Q 35 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Compute the indicated products:

`[[1     -2],[2     3]][[1         2        3],[-3    2      -1]]`


Show that AB ≠ BA in each of the following cases:

`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`

 


If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O

 

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A = [[1     -1],[0          2]] B=   [[-1       0],[2        1]]`and `C= [[0       1],[1     -1]]`


If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.


Compute the elements a43 and a22 of the matrix:`A=[[0     1        0],[2      0        2],[0       3        2],[4        0       4]]` `[[2       -1],[-3           2],[4              3]]  [[0            1           -1                    2                     -2],[3       -3             4          -4                  0]]`

 


If [x 4 1] `[[2       1          2],[1         0          2],[0       2 -4]]`  `[[x],[4],[-1]]` = 0, find x.

 


If


If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0


Solve the matrix equations:

`[x1][[1,0],[-2,-3]][[x],[5]]=0`


Solve the matrix equations:

`[1  2   1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`


Solve the matrix equations:

`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`


Solve the matrix equations:

[2x 3] `[[1       2],[-3      0]] , [[x],[8]]=0`


If f (x) = x2 − 2x, find f (A), where A=


If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.

 

A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800 


There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?


The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (2A)T = 2AT


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(A − B)T = AT − BT


 If \[A = \begin{bmatrix}2 & 4 & - 1 \\ - 1 & 0 & 2\end{bmatrix}, B = \begin{bmatrix}3 & 4 \\ - 1 & 2 \\ 2 & 1\end{bmatrix}\],find `(AB)^T`

 


 If  \[A = \begin{bmatrix}2 & 1 & 4 \\ 4 & 1 & 5\end{bmatrix}and B = \begin{bmatrix}3 & - 1 \\ 2 & 2 \\ 1 & 3\end{bmatrix}\] . Write the orders of AB and BA.
 

 


 If \[A = \begin{bmatrix}4 & 3 \\ 1 & 2\end{bmatrix} and B = \binom{ - 4}{ 3}\] 

write AB.

 

If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.


If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.


For any square matrix write whether AAT is symmetric or skew-symmetric.


If  \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.


If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.


Write a 2 × 2 matrix which is both symmetric and skew-symmetric.


If AB = A and BA = B, where A and B are square matrices,  then


If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix}, B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix}\]and (A + B)2 = A2 + B2,   values of a and b are


If  \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\]  is such that A2 = I, then 

 


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these

 


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.


If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.


If A and B are square matrices of the same order, then (AB)′ = ______.


If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.


If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×