हिंदी

If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] And C=[[1 5 2],[-1 1 0],[0 -1 1]]` Verify That A (B − C) = Ab − Ac. - Mathematics

Advertisements
Advertisements

प्रश्न

If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.

योग

उत्तर

LaTeX

\[Given: A\left( B - C \right) = AB - AC\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & - 2 \\ 3 & - 1 & 0 \\ - 2 & 1 & 1\end{bmatrix}\left( \begin{bmatrix}0 & 5 & - 4 \\ - 2 & 1 & 3 \\ - 1 & 0 & 2\end{bmatrix} - \begin{bmatrix}1 & 5 & 2 \\ - 1 & 1 & 0 \\ 0 & - 1 & 1\end{bmatrix} \right) = \begin{bmatrix}1 & 0 & - 2 \\ 3 & - 1 & 0 \\ - 2 & 1 & 1\end{bmatrix}\begin{bmatrix}0 & 5 & - 4 \\ - 2 & 1 & 3 \\ - 1 & 0 & 2\end{bmatrix} - \begin{bmatrix}1 & 0 & - 2 \\ 3 & - 1 & 0 \\ - 2 & 1 & 1\end{bmatrix}\begin{bmatrix}1 & 5 & 2 \\ - 1 & 1 & 0 \\ 0 & - 1 & 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & - 2 \\ 3 & - 1 & 0 \\ - 2 & 1 & 1\end{bmatrix}\begin{bmatrix}0 - 1 & 5 - 5 & - 4 - 2 \\ - 2 + 1 & 1 - 1 & 3 - 0 \\ - 1 - 0 & 0 + 1 & 2 - 1\end{bmatrix} = \begin{bmatrix}0 - 0 + 2 & 5 + 0 - 0 & - 4 + 0 - 4 \\ 0 + 2 - 0 & 15 - 1 + 0 & - 12 - 3 + 0 \\ 0 - 2 - 1 & - 10 + 1 + 0 & 8 + 3 + 2\end{bmatrix} - \begin{bmatrix}1 - 0 - 0 & 5 + 0 + 2 & 2 + 0 - 2 \\ 3 + 1 + 0 & 15 - 1 - 0 & 6 - 0 + 0 \\ - 2 - 1 + 0 & - 10 + 1 - 1 & - 4 + 0 + 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & - 2 \\ 3 & - 1 & 0 \\ - 2 & 1 & 1\end{bmatrix}\begin{bmatrix}- 1 & 0 & - 6 \\ - 1 & 0 & 3 \\ - 1 & 1 & 1\end{bmatrix} = \begin{bmatrix}2 & 5 & - 8 \\ 2 & 14 & - 15 \\ - 3 & - 9 & 13\end{bmatrix} - \begin{bmatrix}1 & 7 & 0 \\ 4 & 14 & 6 \\ - 3 & - 10 & - 3\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}- 1 - 0 + 2 & 0 + 0 - 2 & - 6 + 0 - 2 \\ - 3 + 1 - 0 & 0 - 0 + 0 & - 18 - 3 + 0 \\ 2 - 1 - 1 & 0 + 0 + 1 & 12 + 3 + 1\end{bmatrix} = \begin{bmatrix}2 - 1 & 5 - 7 & - 8 - 0 \\ 2 - 4 & 14 - 14 & - 15 - 6 \\ - 3 + 3 & - 9 + 10 & 13 + 3\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}1 & - 2 & - 8 \\ - 2 & 0 & - 21 \\ 0 & 1 & 16\end{bmatrix} = \begin{bmatrix}1 & - 2 & - 8 \\ - 2 & 0 & - 21 \\ 0 & 1 & 16\end{bmatrix}\]
\[ \therefore LHS = RHS\]
Hence proved .
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.3 | Q 18 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Compute the indicated products:

`[[1     -2],[2     3]][[1         2        3],[-3    2      -1]]`


Show that AB ≠ BA in each of the following cases:

`A= [[5    -1],[6        7]]`And B =`[[2       1],[3         4]]`


If


If A=, find k such that A2 = kA − 2I2

 

Find the value of x for which the matrix product`[[2       0           7],[0          1            0],[1       -2       1]]` `[[-x         14x          7x],[0         1            0],[x           -4x             -2x]]`equal an identity matrix.


Solve the matrix equations:

`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`


Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`


\[A = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix}\] ,prove that

\[A^n = \begin{bmatrix}\text{cos n α} + \text{sin n α}  & \sqrt{2}\text{sin n  α} \\ - \sqrt{2}\text{sin n α} & \text{cos n α} - \text{sin  n  α} \end{bmatrix}\] for all n ∈ N.

 


Give examples of matrices

 A and B such that AB = O but A ≠ 0, B ≠ 0.


Give examples of matrices

 AB and C such that AB = AC but B ≠ CA ≠ 0.

 

Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.

 

If A and B are square matrices of the same order, explain, why in general

 (A + B) (A − B) ≠ A2 − B2


The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(A − B)T = AT − BT


If `A= [[3],[5],[2]]` And B=[1  0   4] , Verify that `(AB)^T=B^TA^T` 


Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that   (A + B)T = AT + BT


 For two matrices A and B,   \[A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}, B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\](AB)T = BT AT.

 


 If  \[A = \begin{bmatrix}2 & 1 & 4 \\ 4 & 1 & 5\end{bmatrix}and B = \begin{bmatrix}3 & - 1 \\ 2 & 2 \\ 1 & 3\end{bmatrix}\] . Write the orders of AB and BA.
 

 


If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB


If  \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.


If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?


Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.


If AB = A and BA = B, where A and B are square matrices,  then


If A and B are two matrices such n  that AB = B and BA = A , `A^2 + B^2` is equal to


If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to 


If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .


If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.


If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.


The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.


If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)


If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total money (in Rupees) collected by the school DPS?

Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total amount of money (in Rs.) collected by schools CVC and KVS?

Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total amount of money collected by all three schools DPS, CVC, and KVS?

A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs. 1,800.


Let a, b, c ∈ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = `((a, b, c),(b, c, a),(c, a, b))` satisfies ATA = I, then a value of abc can be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×