Advertisements
Advertisements
प्रश्न
\[A = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix}\] ,prove that
\[A^n = \begin{bmatrix}\text{cos n α} + \text{sin n α} & \sqrt{2}\text{sin n α} \\ - \sqrt{2}\text{sin n α} & \text{cos n α} - \text{sin n α} \end{bmatrix}\] for all n ∈ N.
उत्तर
We shall prove the result by the principle of mathematical induction on n.
Step 1: If n = 1, by definition of integral power of a matrix, we have
\[A^1 = \begin{bmatrix}\cos 1\alpha + \sin 1\alpha & \sqrt{2}\sin 1\alpha \\ - \sqrt{2} \sin 1\alpha & \cos 1\alpha - \sin 1\alpha\end{bmatrix} = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix} = A\]So, the result is true for n = 1.
Step 2: Let the result be true for n = m. Then,
\[\]\[A^m = \begin{bmatrix}\cos m\alpha + \sin m\alpha & \sqrt{2}\sin m\alpha \\ - \sqrt{2}\sin m\alpha & \cos m\alpha - \sin m\alpha\end{bmatrix}\]
Now we shall show that the result is true for
\[n = m + 1\]
Here,
\[A^{m + 1} = \begin{bmatrix}\cos \left( m + 1 \right)\alpha + \sin \left( m + 1 \right)\alpha & \sqrt{2}\sin \left( m + 1 \right)\alpha \\ - \sqrt{2}\sin \left( m + 1 \right)\alpha & \cos \left( m + 1 \right)\alpha - \sin \left( m + 1 \right)\alpha\end{bmatrix}\]
By definition of integral power of matrix, we have
\[A^{m + 1} = A^m . A\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos m\alpha + \sin m\alpha & \sqrt{2}\sin m\alpha \\ - \sqrt{2}\sin m\alpha & \cos m\alpha - \sin m\alpha\end{bmatrix}\begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix} \left[ From eq . \left( 1 \right) \right]\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\left( \cos m\alpha + \sin m\alpha \right)\left( \cos \alpha + \sin \alpha \right) - \sqrt{2}\sin m\alpha\left( \sqrt{2}\sin \alpha \right) & \left( \cos m\alpha + \sin m\alpha \right)\left( \sqrt{2}\sin \alpha \right) + \sqrt{2}\sin m\alpha\left( \cos \alpha - \sin \alpha \right) \\ - \sqrt{2}\sin m\alpha\left( \cos \alpha + \sin \alpha \right) - \left( \cos m\alpha - \sin m\alpha \right)\left( \sqrt{2}\sin \alpha \right) & - \sqrt{2}\sin m\alpha\left( \sqrt{2}\sin \alpha \right) + \left( \cos m\alpha - \sin m\alpha \right)\left( \cos \alpha - \sin \alpha \right)\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos m\alpha \cos\alpha + \sin m\alpha \cos\alpha + \cos m\alpha \sin\alpha + \sin m\alpha \sin\alpha - 2\sin m\alpha \sin\alpha & \sqrt{2}\sin \alpha \cos m\alpha + \sqrt{2}\sin \alpha \sin m\alpha + \sqrt{2}\sin m\alpha \cos\alpha - \sqrt{2}\sin ma \sin\alpha \\ - \sqrt{2}\sin ma \cos\alpha - \sqrt{2}\sin ma \sin\alpha - \sqrt{2}\sin \alpha \cos m\alpha + \sqrt{2}\sin \alpha \sin m\alpha & - 2\sin \alpha \sin m\alpha + \cos m\alpha \cos\alpha - \sin m\alpha \cos\alpha - \cos m\alpha \sin\alpha + \sin m\alpha \sin\alpha\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos\left( m\alpha - \alpha \right) + \sin\left( m\alpha + \alpha \right) - \cos\left( m\alpha - \alpha \right) + \cos\left( m\alpha + \alpha \right) & \sqrt{2}\sin\left( m\alpha + \alpha \right) \\ - \sqrt{2}\sin\left( m\alpha + \alpha \right) & \cos\left( m\alpha + \alpha \right) - \sin\left( m\alpha + \alpha \right)\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos\left( m\alpha + \alpha \right) + \sin\left( m\alpha + \alpha \right) & \sqrt{2}\sin\left( m\alpha + a \right) \\ - \sqrt{2}\sin\left( m\alpha + \alpha \right) & \cos\left( m\alpha + \alpha \right) - \sin\left( m\alpha + \alpha \right)\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}\cos\left( m + 1 \right)\alpha + \sin\left( m + 1 \right)\alpha & \sqrt{2}\sin\left( m + 1 \right)\alpha \\ - \sqrt{2}\sin\left( m + 1 \right)\alpha & \cos\left( m + 1 \right)\alpha - \sin\left( m + 1 \right)\alpha\end{bmatrix}\]
\[\]This show that when the result is true for n = m, it is also true for n = m +1.
Hence, by the principle of mathematical induction, the result is valid for all n
\[\in N\]
APPEARS IN
संबंधित प्रश्न
Compute the products AB and BA whichever exists in each of the following cases:
`A=[[3 2],[-1 0],[-1 1]]` and `B= [[4 5 6],[0 1 2]]`
Show that AB ≠ BA in each of the following cases:
`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`
Evaluate the following:
`[[],[1 2 3],[]]` `[[1 0 2],[2 0 1],[0 1 2]]` `[[2],[4],[6]]`
If A = `[[4 2],[-1 1]]`
, prove that (A − 2I) (A − 3I) = O
If A = `[[1 1],[0 1]]` show that A2 = `[[1 2],[0 1]]` and A3 = `[[1 3],[0 1]]`
If A =`[[2 -3 -5],[-1 4 5],[1 -3 -4]]` and B =`[[2 -2 -4],[-1 3 4],[1 2 -3]]`
, show that AB = A and BA = B.
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A = [[1 -1],[0 2]] B= [[-1 0],[2 1]]`and `C= [[0 1],[1 -1]]`
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
Solve the matrix equations:
[2x 3] `[[1 2],[-3 0]] , [[x],[8]]=0`
If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.
If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.
Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
Write matrix A satisfying ` A+[[2 3],[-1 4]] =[[3 6],[- 3 8]]`.
What is the total number of 2 × 2 matrices with each entry 0 or 1?
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
If A and B are two matrices such that AB = A and BA = B, then B2 is equal to
If \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.
If \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals
The matrix \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a
If matrix A = [aij]2×2, where aij `{:(= 1 "if i" ≠ "j"),(= 0 "if i" = "j"):}` then A2 is equal to ______.
If A, B and C are square matrices of same order, then AB = AC always implies that B = C
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total amount of money collected by all three schools DPS, CVC, and KVS?
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- How many articles (in total) are sold by three schools?
A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs. 1,800.
If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.