Advertisements
Advertisements
प्रश्न
Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.
उत्तर
We shall prove the result by the principle of
Step 1: If n = 1, by definition of integral power of a matrix, we have
mathematical induction on n.\[A^1 = \begin{bmatrix}1 & 1 & 1\left( 1 + 1 \right)/2 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{bmatrix} = A\]
Thus, the result is true for n = 1.
Step 2: Let the result be true for n = m. Then,
\[A^m = \begin{bmatrix}1 & m & m\left( m + 1 \right)/2 \\ 0 & 1 & m \\ 0 & 0 & 1\end{bmatrix}\]
Now, we shall show that the result is true for
\[n = m + 1\]
Here,
\[A^{m + 1} = \begin{bmatrix}1 & m + 1 & m + 1\left( m + 1 + 1 \right)/2 \\ 0 & 1 & m + 1 \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}1 & m + 1 & \left( m + 1 \right)\left( m + 2 \right)/2 \\ 0 & 1 & m + 1 \\ 0 & 0 & 1\end{bmatrix}\]
By definition of integral power of matrix, we have
\[A^{m + 1} = A^m A\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}1 & m & m\left( m + 1 \right)/2 \\ 0 & 1 & m \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{bmatrix} \left[ \text{From eq .} \left( 1 \right) \right]\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}1 + 0 + 0 & 1 + m + 0 & 1 + m + m\left( m + 1 \right)/2 \\ 0 + 0 + 0 & 0 + 1 + 0 & 0 + 1 + m \\ 0 + 0 + 0 & 0 + 0 + 0 & 0 + 0 + 1\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}1 & 1 + m & \left( 2 + 2m + m^2 + m \right)/2 \\ 0 & 1 & 1 + m \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}1 & 1 + m & \left( m^2 + 3m + 2 \right)/2 \\ 0 & 1 & 1 + m \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}1 & 1 + m & \left( m + 1 \right)\left( m + 2 \right)/2 \\ 0 & 1 & 1 + m \\ 0 & 0 & 1\end{bmatrix}\]
\[\]
This shows that when the result is true for n = m, it is also true for n = m + 1.
Hence, by the principle of mathematical induction, the result is valid for any positive integer n.
APPEARS IN
संबंधित प्रश्न
Compute the indicated product.
`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Compute the products AB and BA whichever exists in each of the following cases:
`A=[[3 2],[-1 0],[-1 1]]` and `B= [[4 5 6],[0 1 2]]`
If A =`[[2 -3 -5],[-1 4 5],[1 -3 -4]]` and B =`[[2 -2 -4],[-1 3 4],[1 2 -3]]`
, show that AB = A and BA = B.
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A =-[[1 2 0],[-1 0 1]]`,`B=[[1 0],[-1 2],[0 3]]` and C= `[[1],[-1]]`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]`
If `[[2 3],[5 7]] [[1 -3],[-2 4]]-[[-4 6],[-9 x]]` find x.
Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`
If B, C are n rowed square matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ∈ N, An+1 = Bn (B + (n + 1) C).
Give examples of matrices
A and B such that AB = O but A ≠ 0, B ≠ 0.
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.
Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ C, A ≠ O.
Three shopkeepers A, B and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.
If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.
Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.
If A and B are two matrices such n that AB = B and BA = A , `A^2 + B^2` is equal to
If \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
The matrix \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a
If A and B are square matrices of the same order, then (A + B)(A − B) is equal to
If \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then
If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.
If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.
Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.
If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.
If A and B are square matrices of the same order, then (AB)′ = ______.
If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total money (in Rupees) collected by the school DPS?
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?
If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.