Advertisements
Advertisements
प्रश्न
Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.
उत्तर
We shall prove the result by the principle of
Step 1: If n = 1, by definition of integral power of a matrix, we have
mathematical induction on n.\[A^1 = \begin{bmatrix}1 & 1 & 1\left( 1 + 1 \right)/2 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{bmatrix} = A\]
Thus, the result is true for n = 1.
Step 2: Let the result be true for n = m. Then,
\[A^m = \begin{bmatrix}1 & m & m\left( m + 1 \right)/2 \\ 0 & 1 & m \\ 0 & 0 & 1\end{bmatrix}\]
Now, we shall show that the result is true for
\[n = m + 1\]
Here,
\[A^{m + 1} = \begin{bmatrix}1 & m + 1 & m + 1\left( m + 1 + 1 \right)/2 \\ 0 & 1 & m + 1 \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}1 & m + 1 & \left( m + 1 \right)\left( m + 2 \right)/2 \\ 0 & 1 & m + 1 \\ 0 & 0 & 1\end{bmatrix}\]
By definition of integral power of matrix, we have
\[A^{m + 1} = A^m A\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}1 & m & m\left( m + 1 \right)/2 \\ 0 & 1 & m \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{bmatrix} \left[ \text{From eq .} \left( 1 \right) \right]\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}1 + 0 + 0 & 1 + m + 0 & 1 + m + m\left( m + 1 \right)/2 \\ 0 + 0 + 0 & 0 + 1 + 0 & 0 + 1 + m \\ 0 + 0 + 0 & 0 + 0 + 0 & 0 + 0 + 1\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}1 & 1 + m & \left( 2 + 2m + m^2 + m \right)/2 \\ 0 & 1 & 1 + m \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}1 & 1 + m & \left( m^2 + 3m + 2 \right)/2 \\ 0 & 1 & 1 + m \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow A^{m + 1} = \begin{bmatrix}1 & 1 + m & \left( m + 1 \right)\left( m + 2 \right)/2 \\ 0 & 1 & 1 + m \\ 0 & 0 & 1\end{bmatrix}\]
\[\]
This shows that when the result is true for n = m, it is also true for n = m + 1.
Hence, by the principle of mathematical induction, the result is valid for any positive integer n.
APPEARS IN
संबंधित प्रश्न
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find BA
Compute the indicated product:
`[(a,b),(-b,a)][(a,-b),(b,a)]`
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Show that AB ≠ BA in each of the following cases:
`A= [[5 -1],[6 7]]`And B =`[[2 1],[3 4]]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
Compute the elements a43 and a22 of the matrix:`A=[[0 1 0],[2 0 2],[0 3 2],[4 0 4]]` `[[2 -1],[-3 2],[4 3]] [[0 1 -1 2 -2],[3 -3 4 -4 0]]`
\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\] , Show that A2 = A.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.
Find the value of x for which the matrix product`[[2 0 7],[0 1 0],[1 -2 1]]` `[[-x 14x 7x],[0 1 0],[x -4x -2x]]`equal an identity matrix.
Solve the matrix equations:
`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`
If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`
`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + X = 0.
If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .
Three shopkeepers A, B and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800
In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array} \text{Telephone}\\{\text{House calls }}\\ \text{Letters}\end{array}\]
The number of contacts of each type made in two cities X and Y is given in the matrix B as
\[\begin{array}"Telephone & House calls & Letters\end{array}\]
\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City X \\ City Y\end{array}\]
Find the total amount spent by the party in the two cities.
What should one consider before casting his/her vote − party's promotional activity of their social activities?
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.
If `[2 1 3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.
If A and B are two matrices such that AB = A and BA = B, then B2 is equal to
If \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.
A matrix which is not a square matrix is called a ______ matrix.
If A and B are two square matrices of the same order, then AB = BA.
If A, B and C are square matrices of same order, then AB = AC always implies that B = C
If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:
x – 2y = 3
2x – y – z = 2
–2y + z = 3