Advertisements
Advertisements
प्रश्न
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
पर्याय
\begin{bmatrix}a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a\end{bmatrix}
\[\begin{bmatrix}a^n & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\]
\[\begin{bmatrix}a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a^n\end{bmatrix}\]
\[\begin{bmatrix}na & 0 & 0 \\ 0 & na & 0 \\ 0 & 0 & na\end{bmatrix}\]
उत्तर
\[\begin{bmatrix}a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a^n\end{bmatrix}\]
\[Here, \]
\[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix} = \begin{bmatrix}a^2 & 0 & 0 \\ 0 & a^2 & 0 \\ 0 & 0 & a^2\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}a^2 & 0 & 0 \\ 0 & a^2 & 0 \\ 0 & 0 & a^2\end{bmatrix}\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix} = \begin{bmatrix}a^3 & 0 & 0 \\ 0 & a^3 & 0 \\ 0 & 0 & a^3\end{bmatrix}\]
\[\]
This pattern is applicable on all natural numbers .
\[ \therefore A^n = \begin{bmatrix}a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a^n\end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Show that AB ≠ BA in each of the following cases:
`A=[[1 3 0],[1 1 0],[4 1 0]]`And B=`[[0 1 0],[1 0 0],[0 5 1]]`
Compute the products AB and BA whichever exists in each of the following cases:
`A= [[1 -2],[2 3]]` and B=`[[1 2 3],[2 3 1]]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
Show that AB ≠ BA in each of the following cases:
`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`
If A = `[[4 2],[-1 1]]`
, prove that (A − 2I) (A − 3I) = O
If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O
If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] and C=[[1 5 2],[-1 1 0],[0 -1 1]]` verify that A (B − C) = AB − AC.
If \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\] , Show that A2 = I3.
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
If [1 −1 x] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=`= 0, find x.
\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\], then prove that A2 − A + 2I = O.
If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.
If `[[2 3],[5 7]] [[1 -3],[-2 4]]-[[-4 6],[-9 x]]` find x.
If A=then find λ, μ so that A2 = λA + μI
Solve the matrix equations:
[2x 3] `[[1 2],[-3 0]] , [[x],[8]]=0`
`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0
Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`
If B, C are n rowed square matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ∈ N, An+1 = Bn (B + (n + 1) C).
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
write AB.
Given an example of two non-zero 2 × 2 matrices A and B such that AB = O.
If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB.
If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix}, B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix}\]and (A + B)2 = A2 + B2, values of a and b are
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
The matrix \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a
If \[\begin{bmatrix}2x + y & 4x \\ 5x - 7 & 4x\end{bmatrix} = \begin{bmatrix}7 & 7y - 13 \\ y & x + 6\end{bmatrix}\]
If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.
Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.
A matrix which is not a square matrix is called a ______ matrix.
If A and B are square matrices of the same order, then (AB)′ = ______.
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.
If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.