Advertisements
Advertisements
प्रश्न
Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`
उत्तर
let `A=[[w,x],[y,z]]`
\[\begin{bmatrix}w & x \\ y & z\end{bmatrix}\begin{bmatrix}1 & - 2 \\ 1 & 4\end{bmatrix} = 6 I_2 \]
\[ \Rightarrow \begin{bmatrix}w + x & - 2w + 4x \\ y + z & - 2y + 4z\end{bmatrix} = 6\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}w + x & - 2w + 4x \\ y + z & - 2y + 4z\end{bmatrix} = \begin{bmatrix}6 & 0 \\ 0 & 6\end{bmatrix}\]
The corresponding elements of two equal matrices are equal .
\[ \therefore w + x = 6 \]
\[ \Rightarrow w = 6 - x . . . \left( 1 \right) \]
\[ - 2w + 4x = 0 . . . \left( 2 \right) \]
Putting the value of w in eq .(2) we get
\[ - 2\left( 6 - x \right) + 4x = 0\]
\[ \Rightarrow - 12 + 2x + 4x = 0\]
\[ \Rightarrow - 12 + 6x = 0\]
\[ \Rightarrow 6x = 12\]
\[ \Rightarrow x = 2\]
putting the value of x in eq.(1) we get
\[w = 6 - 2\]
\[ \Rightarrow w = 4\]
\[Now, \]
\[y + z = 0\]
\[ \Rightarrow y = - z . . . \left( 3 \right) \]
\[ - 2y + 4z = 6 . . . \left( 4 \right) \]
Putting the value of y in eq .( 4), we get
\[ - 2\left( - z \right) + 4z = 6\]
\[ \Rightarrow 2z + 4z = 6\]
\[ \Rightarrow 6z = 6\]
\[ \Rightarrow z = 1\]
Putting the value of z in eq .( 3 ), we get
\[y = - 1\]
\[ \therefore A = \begin{bmatrix}4 & 2 \\ - 1 & 1\end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find AB
Compute the indicated product.
`[(1),(2),(3)] [2,3,4]`
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Evaluate the following:
`[[1 -1],[0 2],[2 3]]` `([[1 0 2],[2 0 1]]-[[0 1 2],[1 0 2]])`
If A =
\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =
\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A = [[1 -1],[0 2]] B= [[-1 0],[2 1]]`and `C= [[0 1],[1 -1]]`
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
If A=then find λ, μ so that A2 = λA + μI
Solve the matrix equations:
`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000
write AB.
If \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.
Given an example of two non-zero 2 × 2 matrices A and B such that AB = O.
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}\cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\] is identity matrix, then write the value of α.
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to
If \[\begin{bmatrix}2x + y & 4x \\ 5x - 7 & 4x\end{bmatrix} = \begin{bmatrix}7 & 7y - 13 \\ y & x + 6\end{bmatrix}\]
If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to
If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.
Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.
If matrix A = [aij]2×2, where aij `{:(= 1 "if i" ≠ "j"),(= 0 "if i" = "j"):}` then A2 is equal to ______.
A matrix which is not a square matrix is called a ______ matrix.
If A and B are square matrices of the same order, then (AB)′ = ______.
A square matrix where every element is unity is called an identity matrix.