मराठी

`A=[[1,0,-3],[2,1,3],[0,1,1]]`Then Verify that A2 + a = A(A + I), Where I is the Identity Matrix. - Mathematics

Advertisements
Advertisements

प्रश्न

`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.

बेरीज

उत्तर

\[A = \begin{bmatrix}1 & 0 & - 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix}\]\[A^2 = \begin{bmatrix}1 & 0 & - 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix}\begin{bmatrix}1 & 0 & - 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix}\]
\[ = \begin{bmatrix}1 + 0 + 0 & 0 + 0 - 3 & - 3 + 0 - 3 \\ 2 + 2 + 0 & 0 + 1 + 3 & - 6 + 3 + 3 \\ 0 + 2 + 0 & 0 + 1 + 1 & 0 + 3 + 1\end{bmatrix}\]
\[ = \begin{bmatrix}1 & - 3 & - 6 \\ 4 & 4 & 0 \\ 2 & 2 & 4\end{bmatrix}\]

L. H . S

\[A^2 + A = \begin{bmatrix}1 & - 3 & - 6 \\ 4 & 4 & 0 \\ 2 & 2 & 4\end{bmatrix} + \begin{bmatrix}1 & 0 & - 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix}\]
\[ = \begin{bmatrix}1 + 1 & - 3 + 0 & - 6 - 3 \\ 4 + 2 & 4 + 1 & 0 + 3 \\ 2 + 0 & 2 + 1 & 4 + 1\end{bmatrix}\]
\[ = \begin{bmatrix}2 & - 3 & - 9 \\ 6 & 5 & 3 \\ 2 & 3 & 5\end{bmatrix}\]

R. H . S

\[A + I = \begin{bmatrix}1 & 0 & - 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix} + \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ = \begin{bmatrix}1 + 1 & 0 + 0 & - 3 + 0 \\ 2 + 0 & 1 + 1 & 3 + 0 \\ 0 + 0 & 1 + 0 & 1 + 1\end{bmatrix}\]
\[ = \begin{bmatrix}2 & 0 & - 3 \\ 2 & 2 & 3 \\ 0 & 1 & 2\end{bmatrix}\]
\[\]
\[A\left( A + I \right) = \begin{bmatrix}1 & 0 & - 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix}\begin{bmatrix}2 & 0 & - 3 \\ 2 & 2 & 3 \\ 0 & 1 & 2\end{bmatrix}\]
\[ = \begin{bmatrix}2 + 0 + 0 & 0 + 0 - 3 & - 3 + 0 - 6 \\ 4 + 2 + 0 & 0 + 2 + 3 & - 6 + 3 + 6 \\ 0 + 2 + 0 & 0 + 2 + 1 & 0 + 3 + 2\end{bmatrix}\]
\[ = \begin{bmatrix}2 & - 3 & - 9 \\ 6 & 5 & 3 \\ 2 & 3 & 5\end{bmatrix}\]

Therfore,LHS=RHS

Hence,`A^2+A=A(A+l)` is verified

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.3 | Q 52 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Compute the products AB and BA whichever exists in each of the following cases:

 [ab]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`


If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 

For the following matrices verify the associativity of matrix multiplication i.e. (ABC = A(BC):

`A=[[4       2        3],[1       1          2],[3         0          1]]`=`B=[[1        -1          1],[0         1            2],[2           -1          1]]` and  `C= [[1       2       -1],[3       0         1],[0         0         1]]` 


 If  \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\]     ,  Show that A2 = I3.


If


`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + = 0.

 

If BC are n rowed square matrices and if A = B + CBC = CBC2 = O, then show that for every n ∈ NAn+1 = Bn (B + (n + 1) C).

 

If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.

 

Three shopkeepers AB and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.

 

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (2A)T = 2AT


 If \[A = \begin{bmatrix}2 & 4 & - 1 \\ - 1 & 0 & 2\end{bmatrix}, B = \begin{bmatrix}3 & 4 \\ - 1 & 2 \\ 2 & 1\end{bmatrix}\],find `(AB)^T`

 


 For two matrices A and B,   \[A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}, B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\](AB)T = BT AT.

 


Given an example of two non-zero 2 × 2 matrices A and such that AB = O.

 

If \[\begin{bmatrix}1 & 0 \\ y & 5\end{bmatrix} + 2\begin{bmatrix}x & 0 \\ 1 & - 2\end{bmatrix}\]  = I, where I is 2 × 2 unit matrix. Find x and y.

 


What is the total number of 2 × 2 matrices with each entry 0 or 1?


Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]

 


Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.


If `[2     1       3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


If AB are square matrices of order 3, A is non-singular and AB = O, then B is a 


If  \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals 

 


If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y


If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.


Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.


Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.


A matrix which is not a square matrix is called a ______ matrix.


If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)


If matrix AB = O, then A = O or B = O or both A and B are null matrices.


If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?

Let a, b, c ∈ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = `((a, b, c),(b, c, a),(c, a, b))` satisfies ATA = I, then a value of abc can be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×