English

`A=[[1,0,-3],[2,1,3],[0,1,1]]`Then Verify that A2 + a = A(A + I), Where I is the Identity Matrix. - Mathematics

Advertisements
Advertisements

Question

`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.

Sum

Solution

\[A = \begin{bmatrix}1 & 0 & - 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix}\]\[A^2 = \begin{bmatrix}1 & 0 & - 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix}\begin{bmatrix}1 & 0 & - 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix}\]
\[ = \begin{bmatrix}1 + 0 + 0 & 0 + 0 - 3 & - 3 + 0 - 3 \\ 2 + 2 + 0 & 0 + 1 + 3 & - 6 + 3 + 3 \\ 0 + 2 + 0 & 0 + 1 + 1 & 0 + 3 + 1\end{bmatrix}\]
\[ = \begin{bmatrix}1 & - 3 & - 6 \\ 4 & 4 & 0 \\ 2 & 2 & 4\end{bmatrix}\]

L. H . S

\[A^2 + A = \begin{bmatrix}1 & - 3 & - 6 \\ 4 & 4 & 0 \\ 2 & 2 & 4\end{bmatrix} + \begin{bmatrix}1 & 0 & - 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix}\]
\[ = \begin{bmatrix}1 + 1 & - 3 + 0 & - 6 - 3 \\ 4 + 2 & 4 + 1 & 0 + 3 \\ 2 + 0 & 2 + 1 & 4 + 1\end{bmatrix}\]
\[ = \begin{bmatrix}2 & - 3 & - 9 \\ 6 & 5 & 3 \\ 2 & 3 & 5\end{bmatrix}\]

R. H . S

\[A + I = \begin{bmatrix}1 & 0 & - 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix} + \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ = \begin{bmatrix}1 + 1 & 0 + 0 & - 3 + 0 \\ 2 + 0 & 1 + 1 & 3 + 0 \\ 0 + 0 & 1 + 0 & 1 + 1\end{bmatrix}\]
\[ = \begin{bmatrix}2 & 0 & - 3 \\ 2 & 2 & 3 \\ 0 & 1 & 2\end{bmatrix}\]
\[\]
\[A\left( A + I \right) = \begin{bmatrix}1 & 0 & - 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix}\begin{bmatrix}2 & 0 & - 3 \\ 2 & 2 & 3 \\ 0 & 1 & 2\end{bmatrix}\]
\[ = \begin{bmatrix}2 + 0 + 0 & 0 + 0 - 3 & - 3 + 0 - 6 \\ 4 + 2 + 0 & 0 + 2 + 3 & - 6 + 3 + 6 \\ 0 + 2 + 0 & 0 + 2 + 1 & 0 + 3 + 2\end{bmatrix}\]
\[ = \begin{bmatrix}2 & - 3 & - 9 \\ 6 & 5 & 3 \\ 2 & 3 & 5\end{bmatrix}\]

Therfore,LHS=RHS

Hence,`A^2+A=A(A+l)` is verified

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.3 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.3 | Q 52 | Page 45

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Compute the indicated product.

`[(1),(2),(3)] [2,3,4]`


Compute the indicated product.

`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`


Compute the indicated product.

`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`


Compute the indicated product:

`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`


Compute the products AB and BA whichever exists in each of the following cases:

`A= [[1      -2],[2              3]]` and  B=`[[1       2        3],[2         3         1]]`


If A = `[[2       -1],[3             2]]`  and B = `[[0         4],[-1          7]]`find 3A2 − 2B + I


If A =

\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =

\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.


Let A =`[[-1            1               -1],[3         -3           3],[5           5             5]]`and B =`[[0                4                  3],[1              -3              -3],[-1               4                 4]]`

, compute A2 − B2.

 

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A = [[1     -1],[0          2]] B=   [[-1       0],[2        1]]`and `C= [[0       1],[1     -1]]`


If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.


\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]   , Show that A2 = A.


\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.


If 

 


If f (x) = x2 − 2x, find f (A), where A=


If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]


If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 

If `A=[[0,0],[4,0]]` find `A^16`


Give examples of matrices

 A and B such that AB = O but A ≠ 0, B ≠ 0.


Give examples of matrices

A and B such that AB = O but BA ≠ O.


If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000


The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (A + B)T = AT BT


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(AB)T = BT AT

 

Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.


If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.

 

If  \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\]  , find AAT

 

 If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A2.
 

 


If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.


If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals


If  \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals 

 


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these

 


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.


If A and B are square matrices of the same order, then (AB)′ = ______.


If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:

x – 2y = 3

2x – y – z = 2

–2y + z = 3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×