English

Give Examples of Matrices A And B Such That Ab = O But Ba ≠ O. - Mathematics

Advertisements
Advertisements

Question

Give examples of matrices

A and B such that AB = O but BA ≠ O.

Sum

Solution

\[\left( iii \right) Let A = \begin{bmatrix}0 & 1 \\ 0 & 0\end{bmatrix} and B = \begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix}\]

\[ \therefore AB = O \]

\[\text{and BA} = \begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix}\begin{bmatrix}0 & 1 \\ 0 & 0\end{bmatrix} \]

\[ \Rightarrow BA = \begin{bmatrix}0 + 0 & 1 + 0 \\ 0 + 0 & 0 + 0\end{bmatrix}\]

\[ \Rightarrow BA = \begin{bmatrix}0 & 1 \\ 0 & 0\end{bmatrix}\]

Thus, AB = O but BA ≠ O.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.3 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.3 | Q 65.3 | Page 46

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs. 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs 2,000.


Compute the indicated product:

`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`


Show that AB ≠ BA in each of the following cases:

`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`

 


If A =  `[[1    1],[0    1]]`  show that A2 = `[[1       2],[0          1]]` and A3 = `[[1        3],[0       1]]`


If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A=[[2    -1],[1        1],[-1         2]]` `B=[[0     1],[1      1]]` C=`[[1      -1],[0                1]]`


\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]   , Show that A2 = A.


\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\],  then prove that A2 − A + 2I = O.


If


If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0


Solve the matrix equations:

`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`


If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.


Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`


If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then  show that `(A+B)^2=A^2+B^2`


`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.


If BC are n rowed square matrices and if A = B + CBC = CBC2 = O, then show that for every n ∈ NAn+1 = Bn (B + (n + 1) C).

 

Give examples of matrices

 A and B such that AB = O but A ≠ 0, B ≠ 0.


Three shopkeepers AB and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.

 

In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as

      Cost per contact

`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`

The number of contacts of each type made in two cities X and Y is given in matrix B as

       Telephone   House call    Letter

`B= [[    1000, 500,      5000],[3000,1000,     10000                ]]` 

Find the total amount spent by the group in the two cities X and Y.

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (2A)T = 2AT


If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT

 

 For two matrices A and B,   \[A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}, B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\](AB)T = BT AT.

 


If  \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.

 

 


If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.


If `[2     1       3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


If AB are square matrices of order 3, A is non-singular and AB = O, then B is a 


If  \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals 


If  \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\]  is such that A2 = I, then 

 


If  \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then


If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.


Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.


If matrix AB = O, then A = O or B = O or both A and B are null matrices.


If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.


If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total money (in Rupees) collected by the school DPS?

Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total amount of money collected by all three schools DPS, CVC, and KVS?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×