English

If A= `[[1 2],[2 1]]` F (X) = X2 − 2x − 3, Show That F (A) = 0 - Mathematics

Advertisements
Advertisements

Question

If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0

Sum

Solution

Here,

`f (x) =x^2−2x−3`

`⇒f(A)=A^2−2A−3I_2`

Now,

`A^2=A A`

`⇒A^2=[[1    2],[2     1]] ,[[1     2],[2      1]]`

`⇒A^2= [[1+4       2+2],[2+2      4+1]]`

`⇒A^2= [[5    4],[4     5]]`

`f(A)=A^2−2A−3I_2`

⇒f(A)= `[[5       4],[4      5]]-2[[1     2],[2      1]]-3[[1         0],[0     1]]`

⇒f(A)=`[[5       4],[4      5]]-[[2     4],[4    2]]-[[3   0],[0    3]]`

⇒f(A)=`[[5-2-3         4-4-0],[4-4-0       5-2-3]]`

⇒f(A)= `[[5-5             0],[0                  5 -5]]`

⇒f(A)=0

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.3 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.3 | Q 37 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`   

Find AB


Compute the indicated product:

`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`


Compute the products AB and BA whichever exists in each of the following cases:

 [ab]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`


Show that AB ≠ BA in each of the following cases:

`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`

 


Evaluate the following:

`[[1     -1],[0            2],[2           3]]`  `([[1     0        2],[2        0        1]]-[[0             1                 2],[1           0                    2]])`


If A =  `[[1    1],[0    1]]`  show that A2 = `[[1       2],[0          1]]` and A3 = `[[1        3],[0       1]]`


If A = `[[ cos 2θ     sin 2θ],[ -sin 2θ    cos 2θ]]`, find A2.


\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.


If 

 


Solve the matrix equations:

`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`


Solve the matrix equations:

[2x 3] `[[1       2],[-3      0]] , [[x],[8]]=0`


If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then  show that `(A+B)^2=A^2+B^2`


If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.


If BC are n rowed square matrices and if A = B + CBC = CBC2 = O, then show that for every n ∈ NAn+1 = Bn (B + (n + 1) C).

 

Give examples of matrices

 A and B such that AB = O but A ≠ 0, B ≠ 0.


If A and B are square matrices of the same order, explain, why in general

 (A + B) (A − B) ≠ A2 − B2


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(A − B)T = AT − BT


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(AB)T = BT AT

 

If `A= [[3],[5],[2]]` And B=[1  0   4] , Verify that `(AB)^T=B^TA^T` 


If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.

 

 If  \[A = \begin{bmatrix}2 & 1 & 4 \\ 4 & 1 & 5\end{bmatrix}and B = \begin{bmatrix}3 & - 1 \\ 2 & 2 \\ 1 & 3\end{bmatrix}\] . Write the orders of AB and BA.
 

 


 If \[A = \begin{bmatrix}4 & 3 \\ 1 & 2\end{bmatrix} and B = \binom{ - 4}{ 3}\] 

write AB.

 

If \[\begin{bmatrix}1 & 0 \\ y & 5\end{bmatrix} + 2\begin{bmatrix}x & 0 \\ 1 & - 2\end{bmatrix}\]  = I, where I is 2 × 2 unit matrix. Find x and y.

 


If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB


If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?


If \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - 1\end{bmatrix}\] , then A2 is equal to ___________ .


If A and B are two matrices such n  that AB = B and BA = A , `A^2 + B^2` is equal to


Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


If  \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals 


If  \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\]  is such that A2 = I, then 

 


The number of possible matrices of order 3 × 3 with each entry 2 or 0 is 


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix


Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.


If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn 


A square matrix where every element is unity is called an identity matrix.


If A and B are two square matrices of the same order, then AB = BA.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×