English

If `A= [[3],[5],[2]]` and B=[1 0 4] , Verify that `(Ab)^T=B^Ta^T` - Mathematics

Advertisements
Advertisements

Question

If `A= [[3],[5],[2]]` And B=[1  0   4] , Verify that `(AB)^T=B^TA^T` 

Sum

Solution

\[Given: \hspace{0.167em} A = \begin{bmatrix}3 \\ 5 \\ 2\end{bmatrix}\]

\[ A^T = \begin{bmatrix}3 & 5 & 2\end{bmatrix}\]

\[\]\[B = \begin{bmatrix}1 & 0 & 4\end{bmatrix}\]

\[\]\[ B^T = \begin{bmatrix}1 \\ 0 \\ 4\end{bmatrix}\]

\[\]\[Now, \]

\[AB = \begin{bmatrix}3 \\ 5 \\ 2\end{bmatrix}\begin{bmatrix}1 & 0 & 4\end{bmatrix}\]

\[ \Rightarrow AB = \begin{bmatrix}3 & 0 & 12 \\ 5 & 0 & 20 \\ 2 & 0 & 8\end{bmatrix}\]

\[ \Rightarrow \left( AB \right)^T = \begin{bmatrix}3 & 5 & 2 \\ 0 & 0 & 0 \\ 12 & 20 & 8\end{bmatrix} . . . \left( 1 \right)\]

\[\]

\[ B^T A^T = \begin{bmatrix}1 \\ 0 \\ 4\end{bmatrix}\begin{bmatrix}3 & 5 & 2\end{bmatrix}\]

\[ \Rightarrow B^T A^T = \begin{bmatrix}3 & 5 & 2 \\ 0 & 0 & 0 \\ 12 & 20 & 8\end{bmatrix} . . . \left( 2 \right)\]

\[\]

\[ \Rightarrow \left( AB \right)^T = B^T A^T \left[ \text{From eqs }. (1) \hspace{0.167em} \text{and (2)} \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.4 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.4 | Q 2 | Page 54

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Which of the given values of x and y make the following pair of matrices equal?

`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`


Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`   

Find AB


Compute the indicated product.

`[(1),(2),(3)] [2,3,4]`


Compute the indicated product.

`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`


Evaluate the following:

`[[],[1  2  3],[]]` `[[1     0      2],[2       0         1],[0          1       2]]` `[[2],[4],[6]]`


If A =  `[[1    1],[0    1]]`  show that A2 = `[[1       2],[0          1]]` and A3 = `[[1        3],[0       1]]`


Let A =`[[-1            1               -1],[3         -3           3],[5           5             5]]`and B =`[[0                4                  3],[1              -3              -3],[-1               4                 4]]`

, compute A2 − B2.

 

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A = [[1     -1],[0          2]] B=   [[-1       0],[2        1]]`and `C= [[0       1],[1     -1]]`


If [x 4 1] `[[2       1          2],[1         0          2],[0       2 -4]]`  `[[x],[4],[-1]]` = 0, find x.

 


If [1 1 x] `[[1         0            2],[0           2         1],[2            1           0]] [[1],[1],[1]]` = 0, find x.


 If `[[2     3],[5      7]] [[1      -3],[-2       4]]-[[-4      6],[-9        x]]` find x.


If A=then find λ, μ so that A2 = λA + μI

 

Solve the matrix equations:

`[1  2   1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`


 If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`


If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .


Give examples of matrices
A and B such that AB ≠ BA


If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.

 

Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ CA ≠ O.

 

A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000


The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


 If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A2.
 

 


If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.


Write a 2 × 2 matrix which is both symmetric and skew-symmetric.


Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


If AB are square matrices of order 3, A is non-singular and AB = O, then B is a 


If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ? 


If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these

 


If matrix A = [aij]2×2, where aij `{:(= 1  "if i" ≠ "j"),(= 0  "if i" = "j"):}` then A2 is equal to ______.


If A and B are square matrices of the same order, then (AB)′ = ______.


If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)


If A and B are square matrices of the same order, then [k (A – B)]′ = ______.


If matrix AB = O, then A = O or B = O or both A and B are null matrices.


If A and B are two square matrices of the same order, then AB = BA.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total amount of money (in Rs.) collected by schools CVC and KVS?

If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:

x – 2y = 3

2x – y – z = 2

–2y + z = 3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×