Advertisements
Advertisements
Question
If `A= [[3],[5],[2]]` And B=[1 0 4] , Verify that `(AB)^T=B^TA^T`
Solution
\[Given: \hspace{0.167em} A = \begin{bmatrix}3 \\ 5 \\ 2\end{bmatrix}\]
\[ A^T = \begin{bmatrix}3 & 5 & 2\end{bmatrix}\]
\[\]\[B = \begin{bmatrix}1 & 0 & 4\end{bmatrix}\]
\[\]\[ B^T = \begin{bmatrix}1 \\ 0 \\ 4\end{bmatrix}\]
\[\]\[Now, \]
\[AB = \begin{bmatrix}3 \\ 5 \\ 2\end{bmatrix}\begin{bmatrix}1 & 0 & 4\end{bmatrix}\]
\[ \Rightarrow AB = \begin{bmatrix}3 & 0 & 12 \\ 5 & 0 & 20 \\ 2 & 0 & 8\end{bmatrix}\]
\[ \Rightarrow \left( AB \right)^T = \begin{bmatrix}3 & 5 & 2 \\ 0 & 0 & 0 \\ 12 & 20 & 8\end{bmatrix} . . . \left( 1 \right)\]
\[\]
\[ B^T A^T = \begin{bmatrix}1 \\ 0 \\ 4\end{bmatrix}\begin{bmatrix}3 & 5 & 2\end{bmatrix}\]
\[ \Rightarrow B^T A^T = \begin{bmatrix}3 & 5 & 2 \\ 0 & 0 & 0 \\ 12 & 20 & 8\end{bmatrix} . . . \left( 2 \right)\]
\[\]
\[ \Rightarrow \left( AB \right)^T = B^T A^T \left[ \text{From eqs }. (1) \hspace{0.167em} \text{and (2)} \right]\]
APPEARS IN
RELATED QUESTIONS
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find AB
Compute the indicated product.
`[(1),(2),(3)] [2,3,4]`
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Evaluate the following:
`[[],[1 2 3],[]]` `[[1 0 2],[2 0 1],[0 1 2]]` `[[2],[4],[6]]`
If A = `[[1 1],[0 1]]` show that A2 = `[[1 2],[0 1]]` and A3 = `[[1 3],[0 1]]`
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A = [[1 -1],[0 2]] B= [[-1 0],[2 1]]`and `C= [[0 1],[1 -1]]`
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
If [1 1 x] `[[1 0 2],[0 2 1],[2 1 0]] [[1],[1],[1]]` = 0, find x.
If `[[2 3],[5 7]] [[1 -3],[-2 4]]-[[-4 6],[-9 x]]` find x.
If A=then find λ, μ so that A2 = λA + μI
Solve the matrix equations:
`[1 2 1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`
If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`
If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .
Give examples of matrices
A and B such that AB ≠ BA
If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.
Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ C, A ≠ O.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
Write a 2 × 2 matrix which is both symmetric and skew-symmetric.
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
If A, B are square matrices of order 3, A is non-singular and AB = O, then B is a
If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ?
If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these
If matrix A = [aij]2×2, where aij `{:(= 1 "if i" ≠ "j"),(= 0 "if i" = "j"):}` then A2 is equal to ______.
If A and B are square matrices of the same order, then (AB)′ = ______.
If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.
If matrix AB = O, then A = O or B = O or both A and B are null matrices.
If A and B are two square matrices of the same order, then AB = BA.
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total amount of money (in Rs.) collected by schools CVC and KVS?
If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:
x – 2y = 3
2x – y – z = 2
–2y + z = 3