Advertisements
Advertisements
Question
Solve the matrix equations:
`[1 2 1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`
Solution
[1 2 1] `[[1,2,0],[2,0,1],[1,0,2]] [[0],[2],[x]]=0`
⇒[1+4+1 2+0+0 0+2+2] `[[0],[2],[x]]=0`
⇒[6 2 4] `[[0],[2],[x]]=0`
⇒[0+4+4x]=0
⇒4+4x=0
⇒4x=−4
∴ `x=(-4)/4 =-1`
APPEARS IN
RELATED QUESTIONS
Compute the indicated product.
`[(1),(2),(3)] [2,3,4]`
Compute the indicated products
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Show that AB ≠ BA in each of the following cases:
`A=[[1 3 0],[1 1 0],[4 1 0]]`And B=`[[0 1 0],[1 0 0],[0 5 1]]`
Evaluate the following:
`[[1 -1],[0 2],[2 3]]` `([[1 0 2],[2 0 1]]-[[0 1 2],[1 0 2]])`
If A = `[[1 1],[0 1]]` show that A2 = `[[1 2],[0 1]]` and A3 = `[[1 3],[0 1]]`
If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.
If [1 1 x] `[[1 0 2],[0 2 1],[2 1 0]] [[1],[1],[1]]` = 0, find x.
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0
Give examples of matrices
A and B such that AB = O but A ≠ 0, B ≠ 0.
The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800
There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (A + B)T = AT + BT
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
If \[A = \begin{bmatrix}\cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\] is identity matrix, then write the value of α.
Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]
Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.
If \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - 1\end{bmatrix}\] , then A2 is equal to ___________ .
If A and B are two matrices such that AB = A and BA = B, then B2 is equal to
If A and B are two matrices such n that AB = B and BA = A , `A^2 + B^2` is equal to
If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ?
If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to
The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is
The matrix \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a
If \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.
The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.
A matrix which is not a square matrix is called a ______ matrix.
If A and B are square matrices of the same order, then (AB)′ = ______.
If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.