English

Solve the Matrix Equations: `[X1][[1 0],[-2 -3]][[X],[5]]=0` - Mathematics

Advertisements
Advertisements

Question

Solve the matrix equations:

`[x1][[1,0],[-2,-3]][[x],[5]]=0`

Sum

Solution

 [x    1] `[[1,0],[-2,-3]]` `[[x],[5]]=0`

`⇒[x−2   0  -3 ] [(x), (5)] ` = 0
`⇒[x−2   -3 ]  [[x],[5]]=0`

`⇒[x^2−2x   -15 ]` =0

`⇒x^2−2x   -15  `=0

`⇒x^2−5x  +3x  -15  `=0

`⇒x(x -5)  +3(x  -15 ) `=0

`⇒(x -5)  (x+3)= 0 `

`⇒x -5 = 0 or x+3= 0 `

`⇒x = 5  or x = -3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.3 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.3 | Q 40.1 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Compute the indicated products

`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`


Compute the indicated products:

`[[1     -2],[2     3]][[1         2        3],[-3    2      -1]]`


Evaluate the following:

`([[1              3],[-1    -4]]+[[3        -2],[-1         1]])[[1         3           5],[2            4               6]]`


If A =

\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =

\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.


If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 

If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.


If


Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\]  is  root of the equation A2 − 12A − I = O


Solve the matrix equations:

`[1  2   1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`


If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`


Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show  that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.


A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800 


There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?


The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


If `A= [[3],[5],[2]]` And B=[1  0   4] , Verify that `(AB)^T=B^TA^T` 


 If \[A = \begin{bmatrix}2 & 4 & - 1 \\ - 1 & 0 & 2\end{bmatrix}, B = \begin{bmatrix}3 & 4 \\ - 1 & 2 \\ 2 & 1\end{bmatrix}\],find `(AB)^T`

 


 For two matrices A and B,   \[A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}, B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\](AB)T = BT AT.

 


If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.

 

Given an example of two non-zero 2 × 2 matrices A and such that AB = O.

 

If \[\begin{bmatrix}1 & 0 \\ y & 5\end{bmatrix} + 2\begin{bmatrix}x & 0 \\ 1 & - 2\end{bmatrix}\]  = I, where I is 2 × 2 unit matrix. Find x and y.

 


 If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A2.
 

 


For any square matrix write whether AAT is symmetric or skew-symmetric.


If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.


If AB = A and BA = B, where A and B are square matrices,  then


If  \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals 

 


If  \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals 


The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these

 


If  \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix


If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.


If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn 


A matrix which is not a square matrix is called a ______ matrix.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×