Advertisements
Advertisements
Question
Solve the matrix equations:
`[x1][[1,0],[-2,-3]][[x],[5]]=0`
Solution
[x 1] `[[1,0],[-2,-3]]` `[[x],[5]]=0`
`⇒[x−2 0 -3 ] [(x), (5)] ` = 0
`⇒[x−2 -3 ] [[x],[5]]=0`
`⇒[x^2−2x -15 ]` =0
`⇒x^2−2x -15 `=0
`⇒x^2−5x +3x -15 `=0
`⇒x(x -5) +3(x -15 ) `=0
`⇒(x -5) (x+3)= 0 `
`⇒x -5 = 0 or x+3= 0 `
`⇒x = 5 or x = -3`
APPEARS IN
RELATED QUESTIONS
Compute the indicated products
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Evaluate the following:
`([[1 3],[-1 -4]]+[[3 -2],[-1 1]])[[1 3 5],[2 4 6]]`
If A =
\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =
\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.
If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.
If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] and C=[[1 5 2],[-1 1 0],[0 -1 1]]` verify that A (B − C) = AB − AC.
If
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
Solve the matrix equations:
`[1 2 1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`
If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`
Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800
There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
If `A= [[3],[5],[2]]` And B=[1 0 4] , Verify that `(AB)^T=B^TA^T`
If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.
Given an example of two non-zero 2 × 2 matrices A and B such that AB = O.
For any square matrix write whether AAT is symmetric or skew-symmetric.
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
If AB = A and BA = B, where A and B are square matrices, then
If \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals
If \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals
The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these
If \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix
If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.
If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn
A matrix which is not a square matrix is called a ______ matrix.