Advertisements
Advertisements
Question
Given an example of two non-zero 2 × 2 matrices A and B such that AB = O.
Solution
Let the two matrices be A = \begin{bmatrix}5 & 0 \\ 9 & 0\end{bmatrix} and B = \begin{bmatrix}0 & 0 \\ 12 & - 21\end{bmatrix}, such that AB = \begin{bmatrix}5 & 0 \\ 9 & 0\end{bmatrix}\begin{bmatrix}0 & 0 \\ 12 & - 21\end{bmatrix}
APPEARS IN
RELATED QUESTIONS
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Compute the indicated product:
`[(a,b),(-b,a)][(a,-b),(b,a)]`
Compute the indicated product.
`[(1),(2),(3)] [2,3,4]`
Compute the indicated product.
`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Compute the indicated product:
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Show that AB ≠ BA in each of the following cases:
`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`
Evaluate the following:
`[[],[1 2 3],[]]` `[[1 0 2],[2 0 1],[0 1 2]]` `[[2],[4],[6]]`
If A = `[[1 1],[0 1]]` show that A2 = `[[1 2],[0 1]]` and A3 = `[[1 3],[0 1]]`
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
Solve the matrix equations:
[2x 3] `[[1 2],[-3 0]] , [[x],[8]]=0`
`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3
If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .
If B, C are n rowed square matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ∈ N, An+1 = Bn (B + (n + 1) C).
If A and B are square matrices of the same order, explain, why in general
(A − B)2 ≠ A2 − 2AB + B2
If A and B are square matrices of the same order, explain, why in general
(A + B) (A − B) ≠ A2 − B2
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(2A)T = 2AT
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
For any square matrix write whether AAT is symmetric or skew-symmetric.
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.
If A and B are two matrices such that AB = A and BA = B, then B2 is equal to
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.
If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.
A matrix which is not a square matrix is called a ______ matrix.
If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- How many articles (in total) are sold by three schools?