English

A Trust Fund Has Rs 30000 that Must Be Invested in Two Different Types of Bonds. the First Bond Pays 5% Interest per Year, and the Second Bond Pays 7% Interest per Year. (Ii) Rs 2000 - Mathematics

Advertisements
Advertisements

Question

A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000

Sum

Solution

(ii)

[x   30000-x][51007100]=[2000]

[5x100+7(30000x)100]=[2000]

5x+2100007x100=2000

2100002x=200000

2x=10000

x=5000

Thus,

Amount invested in the first bond = Rs 5000

(300005000) = Rs = 25000

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.3 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.3 | Q 74.2 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Compute the indicated product:

[234345456][1-35024305]


Show that AB ≠ BA in each of the following cases

A=[-1     1      00     -1      12         3        4]  and  =B [1     2      30     1      01    1     0]


Compute the products AB and BA whichever exists in each of the following cases:

 [ab][cd]+ [a, b, c, d] [abcd]


Evaluate the following:

([1       3-1  -4]+[3    -2-1     1])[1     3      52      4        6]


Evaluate the following:

[1 2 3] [1   0   22    0     10     1    2] [246]


Evaluate the following:

[1   -10      22      3]  ([1   0    22    0    1]-[0       1         21      0          2])


If A = [cos2θ   sin2θ -sin2θ  cos2θ], find A2.


If A = [0c-b-c0ab-a0]and B =[a2abacabb2bcacbcc2], show that AB = BA = O3×3.

 

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

A=[1   -10     2]B=  [-1    02    1]and C=[0    11   -1]


If


If A=[3542] , find A2 − 5A − 14I.


If [1 1 x] [1     0      20      2     12      1      0][111] = 0, find x.


If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 

Find a 2 × 2 matrix A such that A=[1-214]=6l2


If A=[0-xx0],[0110] and x2=-1, then  show that (A+B)2=A2+B2


A=[10-3213011]then verify that A2 + A = A(A + I), where I is the identity matrix.


A=[2012131-10] , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + = 0.

 

Let A=[111011001] Use the principle of mathematical introduction to show  that An[1nn(n+1)/2011001] for every position integer n.


Three shopkeepers AB and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.

 

A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800 


Let  A=[2-3-75] And B=[102-4] verify that 

 (2A)T = 2AT


If A=[-245]B = [1 3 −6], verify that (AB)T = BT AT

 

If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.

 

Given an example of two non-zero 2 × 2 matrices A and such that AB = O.

 

If  A=[cosxsinxsinxcosx]  , find AAT

 

If A=[1111], satisfies the matrix equation A2 = kA, write the value of k.
 

If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB


If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?


Write a 2 × 2 matrix which is both symmetric and skew-symmetric.


If A=[100010ab1] , then A2 is equal to ___________ .


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) nk (d) none of these

 


If [2x+y4x5x74x]=[77y13yx+6] 


If A = [39018-2754] and B =[402714226] , then find the matrix BA .


If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn 


The matrix P = [004040400]is a ______.


If matrix A = [aij]2×2, where aij =1 if ij=0 if i=j then A2 is equal to ______.


If matrix AB = O, then A = O or B = O or both A and B are null matrices.


Let a, b, c ∈ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = (abcbcacab) satisfies ATA = I, then a value of abc can be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.