English

If A= `[[1 0 2],[0 2 1],[2 0 3]]` , Then Show that a is a Root of the Polynomial F (X) = X3 − 6x2 + 7x + 2. - Mathematics

Advertisements
Advertisements

Question

If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 
Sum

Solution

\[Given: \hspace{0.167em} f\left( x \right) = x^3 - 6 x^2 + 7x + 2\]
\[f\left( A \right) = A^3 - 6 A^2 + 7A + 2 I_3 \]
\[Now, \]
\[ A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{bmatrix}\begin{bmatrix}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}1 + 0 + 4 & 0 + 0 + 0 & 2 + 0 + 6 \\ 0 + 0 + 2 & 0 + 4 + 0 & 0 + 2 + 3 \\ 2 + 0 + 6 & 0 + 0 + 0 & 4 + 0 + 9\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13\end{bmatrix}\]
\[\]
\[ A^3 = A^2 A\]
\[ \Rightarrow A^3 = \begin{bmatrix}5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13\end{bmatrix}\begin{bmatrix}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}5 + 0 + 16 & 0 + 0 + 0 & 10 + 0 + 24 \\ 2 + 0 + 10 & 0 + 8 + 0 & 4 + 4 + 15 \\ 8 + 0 + 26 & 0 + 0 + 0 & 16 + 0 + 39\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55\end{bmatrix}\]
\[\]
\[ A^3 - 6 A^2 + 7A + 2 I_3 \]
\[ \Rightarrow A^3 - 6 A^2 + 7A + 2 I_3 = \begin{bmatrix}21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55\end{bmatrix} - 6\begin{bmatrix}5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13\end{bmatrix} + 7\begin{bmatrix}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{bmatrix} + 2\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow A^3 - 6 A^2 + 7A + 2 I_3 = \begin{bmatrix}21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55\end{bmatrix} - \begin{bmatrix}30 & 0 & 48 \\ 12 & 24 & 30 \\ 48 & 0 & 78\end{bmatrix} + \begin{bmatrix}7 & 0 & 14 \\ 0 & 14 & 7 \\ 14 & 0 & 21\end{bmatrix} + \begin{bmatrix}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{bmatrix}\]
\[ \Rightarrow A^3 - 6 A^2 + 7A + 2 I_3 = \begin{bmatrix}21 - 30 + 7 + 2 & 0 - 0 + 0 + 0 & 34 - 48 + 14 + 0 \\ 12 - 12 + 0 + 0 & 8 - 24 + 14 + 2 & 23 - 30 + 7 + 0 \\ 34 - 48 + 14 + 0 & 0 - 0 + 0 + 0 & 55 - 78 + 21 + 2\end{bmatrix}\]
\[ \Rightarrow A^3 - 6 A^2 + 7A + 2 I_3 = \begin{bmatrix}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{bmatrix} = 0\]
\[\]
since `f(A)=0,A ` is the root of `f(A)x^3-6x^2+7x+2.`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.3 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.3 | Q 44 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`   

Find AB


Compute the indicated products:

`[[1     -2],[2     3]][[1         2        3],[-3    2      -1]]`


Compute the products AB and BA whichever exists in each of the following cases:

A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`

 


If A = `[[ cos 2θ     sin 2θ],[ -sin 2θ    cos 2θ]]`, find A2.


If A =

\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =

\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.


For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):

`A =-[[1             2         0],[-1        0           1]]`,`B=[[1       0],[-1        2],[0        3]]` and C= `[[1],[-1]]`


If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0


Find the value of x for which the matrix product`[[2       0           7],[0          1            0],[1       -2       1]]` `[[-x         14x          7x],[0         1            0],[x           -4x             -2x]]`equal an identity matrix.


Solve the matrix equations:

`[1  2   1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`


`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0


Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`


If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.


Give examples of matrices
A and B such that AB ≠ BA


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.

 

In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as

      Cost per contact

`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`

The number of contacts of each type made in two cities X and Y is given in matrix B as

       Telephone   House call    Letter

`B= [[    1000, 500,      5000],[3000,1000,     10000                ]]` 

Find the total amount spent by the group in the two cities X and Y.

 

There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (2A)T = 2AT


 If \[A = \begin{bmatrix}2 & 4 & - 1 \\ - 1 & 0 & 2\end{bmatrix}, B = \begin{bmatrix}3 & 4 \\ - 1 & 2 \\ 2 & 1\end{bmatrix}\],find `(AB)^T`

 


Express the matrix \[A = \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.

If  \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.


If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?


What is the total number of 2 × 2 matrices with each entry 0 or 1?


Write a 2 × 2 matrix which is both symmetric and skew-symmetric.


If \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - 1\end{bmatrix}\] , then A2 is equal to ___________ .


If AB are square matrices of order 3, A is non-singular and AB = O, then B is a 


If  \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals 

 


If \[\begin{bmatrix}2x + y & 4x \\ 5x - 7 & 4x\end{bmatrix} = \begin{bmatrix}7 & 7y - 13 \\ y & x + 6\end{bmatrix}\] 


If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is 

Disclaimer: option (a) and (d) both are the same.

 

Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.


Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.


If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.


If matrix A = [aij]2×2, where aij `{:(= 1  "if i" ≠ "j"),(= 0  "if i" = "j"):}` then A2 is equal to ______.


If A, B and C are square matrices of same order, then AB = AC always implies that B = C


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total money (in Rupees) collected by the school DPS?

Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total amount of money collected by all three schools DPS, CVC, and KVS?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×